biologia plantarum

International journal on Plant Life established by Bohumil Němec in 1959

Biologia plantarum 49:321-331, 2005 | DOI: 10.1007/s10535-005-0001-1

Target sites of aluminum phytotoxicity

S. J. Zheng1,*, J. L. Yang1
1 College of Environmental and Resource Science, Zhejiang University, Hangzhou, P.R. China

The primary phytotoxic effect of aluminum (Al) is confined to the root apex. It is a matter of debate whether the primary injury of Al toxicity is apoplastic or symplastic. This review paper summarizes our current understanding of the spatial and metabolic sites of Al phytotoxicity. At tissue level, the meristematic, distal transition, and apical elongation zones of the root apex are most sensitive to Al. At cellular and molecular level, many cell components are implicated in Al toxicity including DNA in nucleus, numerous cytoplastic compounds, the plasma membrane, and the cell wall. Although it is difficult to distinguish the primary targets from the secondary effects so far, understanding of the target sites of Al toxicity is helpful for elucidating the mechanisms by which Al exerts its deleterious effects on root growth.

Keywords: acid soil; apoplast; callose; calmodulin; cell wall; cytoskeleton; nucleus; plasma membrane; root; symplast
Subjects: aluminium, phytotoxicity; apoplast, aluminium; calcium, calmodulin, aluminium; callose, aluminium; calmodulin; cell wall; cytoskeleton, aluminium; lipid peroxidation; membrane potential, aluminium; nucleus, aluminium; phosphatidylinositol-4,5-bisphosphate; plasma membrane, aluminium; reactive oxygen species (ROS); root, apex, aluminium; symplast, aluminium

Received: February 23, 2004; Accepted: January 20, 2005; Published: September 1, 2005  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Zheng, S.J., & Yang, J.L. (2005). Target sites of aluminum phytotoxicity. Biologia plantarum49(3), 321-331. doi: 10.1007/s10535-005-0001-1
Download citation

References

  1. Ahn, S.J., Sivaguru, M., Chung, G.C., Rengel, Z., Matsumoto, H.: Aluminium-induced growth inhibition is associated with impaired efflux and influx of H+ across the plasma membrane in root apixes of squash (Cucurbita pepo).-J. exp. Bot. 376: 1959-1966, 2002. Go to original source...
  2. Ahn, S.J., Sivaguru, M., Osawa, H., Chung, G.C., Matsumoto, H.: Aluminum inhibits the H+-ATPase activity by permanently altering the plasma membrane surface potentials in squash roots.-Plant Physiol. 126: 1381-1390, 2001. Go to original source...
  3. Akeson, M., Munns, D.N.: Lipid bilayer permeation by neutral aluminum citrate and by three alpha hydroxy carboxylic acids.-Biochem. biophys. Acta 984: 200-206, 1989. Go to original source...
  4. Akeson, M., Munns, D.N., Burau, R.G.: Adsorption of Al3+ to phosphatidylcholine vesicles.-Biochem. biophys. Acta 986: 33-40, 1989. Go to original source...
  5. Archambault, D.J., Zhang, G., Taylor, G.J.: Accumulation of Al in root mucilage of an Al-resistant and an Al-sensitive cultivar of wheat.-Plant Physiol. 112: 1471-1478, 1996. Go to original source...
  6. Basu, A., Basu, U., Taylor, G. J.: Induction of microsomal membrane proteins in roots of an aluminum-resistant cultivar of Triticum aestivum L. under conditions of aluminum stress.-Plant Physiol. 104: 1007-1013, 1994. Go to original source...
  7. Basu, U., Good, A.G., Taylor, G.J.: Transgenic Brassica napus plants overexpressing aluminium-induced mitochondrial manganese superoxide dismutase cDNA are resistant to aluminium.-Plant Cell Environ. 24: 1269-1278, 2001. Go to original source...
  8. Bennet, R.J., Breen, C.M.: The aluminium signal: new dimensions to mechanisms of aluminium tolerance.-In: Wright, R.J., Baligar, V.C., Murrmann, R.P. (ed.): Plant-Soil Interactions at Low pH. Pp. 703-716. Kluwer Academic Publ., Dordrecht 1991. Go to original source...
  9. Berridge, M.J.: Inositol trisphosphate and diacylglycerol: two interacting second messengers.-Ann. Biochem. 56: 159-193, 1987. Go to original source...
  10. Blamey, F.P.C.: The role of the root cell wall in aluminum toxicity.-In: Ae, N., Arihara, J., Okada, K., Srinivasan, A. (ed.): Plant Nutritent Acquisition. New Perspectives. Pp. 201-226. Springer-Verlag, Tokyo 2001. Go to original source...
  11. Blamey, F.P.C., Dowling, A.J.: Antagonism between aluminium and calcium for sorption by calcium pectate.-Plant Soil 171: 137-140, 1995. Go to original source...
  12. Blancaflor, E.B., Jones, D.L., Gilroy, S.: Alterations in the cytoskeleton accompany aluminum-induced growth inhibition and morphological changes in primary roots of maize.-Plant Physiol. 118: 159-172, 1998. Go to original source...
  13. Boscolo, P.R.S., Menossi, M., Jorge, R.A.: Aluminum-induced oxidative stress in maize.-Phytochemistry 62: 181-189, 2003. Go to original source...
  14. Cakmak, L, Horst, W.J.: Effect of aluminium on lipid peroxidation, superoxide dismutase, catalase, and peroxidase activities in root tips of soybean (Glycine max).-Physiol. Plant. 83: 463-468, 1991. Go to original source...
  15. Ciamporova, M.: Morphological and structure responses of plant roots to aluminium at organ, tissue, and cellular levels.-Biol. Plant. 45: 161-171, 2002. Go to original source...
  16. Clarkson, D.T.: The effect of aluminium and some trivalent metal cations on cell division in the root apices of Allium cepa.-Ann. Bot. 29: 309-315, 1965. Go to original source...
  17. Cote, G.G., Crain, R.C.: Biochemistry of phosphoinositides.-Annu. Rev. Plant Physiol. Plant mol. Biol. 44: 333-356, 1993. Go to original source...
  18. Cruz-Ortega, R., Cushman, J.C., Ownby, J.P.: cDNA clones encoding 1,3-(beta;-glucanase and a fimbrin-like cytoskeletal protein are induced by Al toxicity in wheat roots.-Plant Physiol. 114: 1453-1460, 1997. Go to original source...
  19. Darnowski, D.W., Valenta, R., Parthasarathy, M.V.: Identification and distribution of profilin in tomato (Lycopersicon esculentum Mill.).-Planta 198: 158-161, 1996. Go to original source...
  20. De la Fuente, J.M., Herrera-Estrella, L.: Advances in the understanding of aluminum toxicity and the development of aluminum-tolerant transgenic plants.-Adv. Agron. 66: 103-120, 1999. Go to original source...
  21. Delhaize, E., Ryan, P.R.: Aluminum toxicity and tolerance in plants.-Plant Physiol. 107: 315-321, 1995. Go to original source...
  22. Devi, S.R., Yamamoto, Y., Matsumoto, H.: An intracellular mechanism of aluminum tolerance associated with high antioxidant status in cultured tobacco cells.-J. inorg. Biochem. 97: 59-68, 2003. Go to original source...
  23. Drobak, B.K., Watkins, P.A.C., Valenta, R., Dove, S.K., Lloyd, C.W., Staiger, C.J.: Inhibition of plant plasma membrane phosphoinositide phospholipase C by the actin-binding protein profiling.-Plant J. 6: 389-400, 1994. Go to original source...
  24. Ezaki, B., Gardner, R.C., Ezaki, Y, Matsumoto, H.: Expression of aluminum-induced genes in transgenic arabidopsis plants can ameliorate aluminum stress and/or oxidative stress.-Plant Physiol. 122: 657-665, 2000. Go to original source...
  25. Ezaki, B., Tsugita, S., Matsumoto, H.: Expression of a moderately anionic peroxidase is induced by aluminum treatment in tobacco cells: Possible involvement of peroxidase isozymes in aluminum ion stress.-Physiol. Plant. 96: 21-28, 1996. Go to original source...
  26. Ezaki, B., Yamamoto, Y., Matsumoto, H.: Cloning and sequencing of the cDNAs induced by aluminium treatment and Pi starvation in cultured tobacco cells.-Physiol. Plant. 93: 11-18, 1995. Go to original source...
  27. Fiskesjo, G.: Occurrence and degeneration of "Al-structure" in root cap cells of Allium cepa L. after Al-treatment.-Hereditas 112: 193-202, 1990. Go to original source...
  28. Foy, C.D.: The physiology of plant adaptation to metal stress.-Iowa State J. Res. 57: 355-391, 1983.
  29. Grabski, S., Schindler, M.: Aluminum induces rigor within the actin network of soybean cells.-Plant Physiol. 108: 897-901, 1995. Go to original source...
  30. Gunse, B., Poschenrieder, C., Barcelo, J.: Water transport properties of roots and root cortical cells in proton-and Alstressed maize varieties.-Plant Physiol. 113: 595-602, 1997. Go to original source...
  31. Hartwell, B.L., Pember, F.R.: The presence of aluminium as a reason for the difference in the effect of so-called acid soil on barley and rye.-Soil Sci. 6: 259-279, 1918. Go to original source...
  32. Haug, A., Vitorello, V.: Aluminium coordination to calmodulin: thermodynamic and kinetic aspects.-Coordination Chem. Rev. 149: 113-124, 1996. Go to original source...
  33. Horst, W.J.: The role of the apoplast in aluminium toxicity and resistance of higher pants: A review.-Z. Pflanzenernahr. Bodenk. 158: 419-428, 1995. Go to original source...
  34. Horst, W.J., Asher, C.J., Cakmak, I., Szulkiewica, P., Wissemeier, A.H.: Short-term responses of soybean roots to Al.-J. Plant Physiol. 140: 174-178, 1992. Go to original source...
  35. Horst, W.J., Poschel, A.K., Schmohl, N.: Induction of callose formation is a sensitive marker for genotypic aluminium sensitivity in maize.-Plant Soil 192: 23-30, 1997. Go to original source...
  36. Horst, W.J., Schmohl, N., Baluska, F., Sivaguru, M.: Does aluminium affect root growth of maize through interaction with the cell wall-plasma membrane-cytoskeleton continuum?-Plant Soil 215: 163-174, 1999. Go to original source...
  37. Horst, W.J., Wanger, A., Marschner, H.: Mucilage protects roots from aluminum injury.-Z. Pflanzenphysiol. 105: 435-444, 1982. Go to original source...
  38. Huang, J.W., Grunes, D.L., Kochian, L.V.: Aluminum effects on the kinetics of calcium uptake into cells of the wheat root apex.-Planta 188: 414-421, 1992a. Go to original source...
  39. Huang, J.W., Shaff, J.E., Grunes, D.L., Kochian, L.V.: Aluminum effects on calcium fluxes at the root apex of aluminum-tolerant and aluminum-sensitive wheat cultivars.-Plant Physiol. 98: 230-237, 1992b. Go to original source...
  40. Huck, M.G.: Impairment of sucrose utilization for cell wall formation in the roots of aluminum-damaged cotton seedlings.-Plant Cell Physiol. 13: 7-14, 1972. Go to original source...
  41. Ishikawa, S., Wagatsuma, T.: Plasma membrane permeability of root-tip cells following temporary exposure to Al ions is a rapid measure of Al tolerance among plant species.-Plant Cell Physiol. 39: 516-525, 1998. Go to original source...
  42. Ishikawa, S., Wagatsuma, T., Takano, T., Tawaraya, K., Oomata, K.: The plasma membrane intactness of root-tip cell is a primary factor for Al-tolerance in cultivars of five species.-Soil Sci. Plant Nutr. 47: 489-501, 2001. Go to original source...
  43. Jones, D.L., Gilroy, S., Larsen, P.B., Howell, S.H., Kochian, L.V.: Effect of aluminum on cytoplasmic Ca2+ homeostasis in root hairs of Arabidopsis thaliana (L.).-Planta 206: 378-387, 1998. Go to original source...
  44. Jones, D.L., Kochian, L.V.: Aluminium inhibition of the inositol 1,4,5-triphosphate signal transduction pathway in wheat roots: a role in aluminium toxicity?-Plant Cel1 7: 1931-1922, 1995. Go to original source...
  45. Jones, D.L., Shaff, J.E., Kochian, L.V.: Role of calcium and other ions in directing root hair tip growth in Limnobium stoloniferum. I. Inhibition of tip growth by aluminum.-Planta 197: 672-680, 1995. Go to original source...
  46. Jorge, R.A., Menossi, M., Arruda, P.: Probing the role of calmodulin in Al toxicity in maize.-Phytochemistry 58: 415-422, 2001. Go to original source...
  47. Jorns, A.C., Hecht-Buchholz, C., Wisseier, A.H.: Aluminum-induced callose formation in root tips of Norway spruce [Picea abies (L.) Karst.].-Z. Pflanzenernahr. Bodenk. 154: 349-353, 1991. Go to original source...
  48. Kataoka, T., Furukawa, J., Nakanishi, T.M.: The decrease of extracted apoplast protein in soybean root tip by aluminium treatment.-Biol. Plant. 46: 445-449, 2003. Go to original source...
  49. Kenzhebaeva, S.S., Yamamoto, Y., Matsumoto, H.: Aluminum-induced changes in cell-wall glycoproteins in the root tips of Al-tolerant and Al-sensitive wheat lines.-Russ. J. Plant Physiol. 48: 441-447, 1999. Go to original source...
  50. Kinraide, T.B.: Use of Gouy-Chapman-Stern model for membrane-surface-electrical potential to interpret some feature of mineral rhizotoxicity.-Plant Physiol. 106: 1583-1592, 1994. Go to original source...
  51. Kochian, L.V.: Cellular mechanisms of aluminum toxicity and resistance in plants.-Annu. Rev. Plant Physiol. Plant mol. Biol. 46: 237-260, 1995. Go to original source...
  52. Kochian, L.V., Jones, D.L.: Aluminum toxicity and resistence in plants.-In: Yokel, R., Golub, M.S. (ed.): Research Issues in Aluminum Toxicity. Pp. 69-90. Taylor and Francis Publ., Washington 1997.
  53. Kollmeier, M., Felle, H.H., Horst, W.J.: Genotypical differences in aluminum resistence of maize are expressed in the distal part of the transition zone. Is reduced basipetal auxin flow involved in inhibition of root elongation by aluminum?-Plant Physiol. 122: 945-956, 2000. Go to original source...
  54. Kuo, M.C., Kao, C.H.: Aluminum effects on lipid peroxidation and antioxidative enzyme activities in rice leaves.-Biol. Plant. 46: 149-152, 2003. Go to original source...
  55. Lazof, D.B., Goldsmith, J.G, Rufty, T.W., Linton, R.W.: Rapid uptake of aluminum into cells of intact soybean root tips: a microanalytical study using secondary ion mass spectrometry.-Plant Physiol. 106: 1107-1114, 1994. Go to original source...
  56. Le Van, H., Kuraishi, S., Sakurai, N.: Aluminum-induced rapid root inhibition and changes in cell-wall components of squash seedlings.-Plant Physiol. 106: 971-976, 1994. Go to original source...
  57. Li, X.F., Ma, J.F., Syuntaro, S., Matsumoto, H.: Mucilage strongly binds aluminum but dose not prevent roots from aluminum in Zea mays.-Physiol. Plant. 108: 152-160, 2000. Go to original source...
  58. Lindberg, S., Strid, H.: Aluminum induces rapid changes in cytosolic pH and free calcium and potassium concentrations in root protoplasts of wheat (Triticum aestivum).-Physiol. Plant. 99: 405-414, 1997. Go to original source...
  59. Lindberg, S., Szynkier, K., Greger, M.: Aluminium effects on transmembrane potential in cells of fibrous roots of sugar beet.-Physiol. Plant. 83: 54-62, 1991. Go to original source...
  60. Llugany, M., Massot, N., Wisseier, A.H., Poschenrieder, C., Horst, W.J., Barcelo, J.: Aluminum tolerance of maize cultivars as assessed by callose production and root elongation.-Z. Pflanzenernahr. Bodenk. 157: 447-451, 1994. Go to original source...
  61. Llugany, M., Poschenrieder, C., Barcelo, J.: Monitoring of aluminium-induced inhibition of root elongation in four maize cultivars differing in tolerance to aluminium and proton toxicity.-Physiol. Plant. 93: 265-271, 1995. Go to original source...
  62. MacDonald, T.L., Humphreys, W.G., Martin, B.R.: Promotion of tubulin assembly by aluminum ion in vitro.-Science 236: 183-186, 1987. Go to original source...
  63. MacDonald, T.L., Martin, R.B.: Aluminum ion in biological systems.-Trends biol. Sci. 13: 15-19, 1988. Go to original source...
  64. Marienfeld, S., Stelzer, R.: X-ray microanalyses in roots of Al-treated Avena sativa plants.-J. Plant Physiol. 141: 569-573, 1993. Go to original source...
  65. Marschner, H.: Mechanisms of adaptation of plants to acid soils.-Plant Soil 134: 1-20, 1991. Go to original source...
  66. Masaoka, Y., Saito, A., Arakawa, Y., Matsuzaki, H., Miyazaki, C., Kobayashi, K.: Al26 microanalysis in the leaf cell organelles of ryegrass and barley by accelerator mass spectrometry (AMS).-J. Plant Nutr. 25: 343-354, 2002. Go to original source...
  67. Massot, N., Llugany, M., Poschenrieder, C., Barcelo, J.: Callose production as indicator of aluminum toxicity in bean cultivars.-J. Plant Nutr. 22: 1-10, 1999. Go to original source...
  68. Matsumoto, H.: Changes of the structure of pea chromatin by aluminum.-Plant Cell Physiol. 29: 281-287, 1988.
  69. Matsumoto, H.: Biochemical mechanism of the toxicity of aluminium and the sequestration of aluminum in plant cells.-In: Wright, R.J., Baligar, V.C., Murrmann, R.P. (ed.): Plant-Soil Interactions at Low pH. Pp. 825-838. Kluwer Academic Publ., Dordrecht 1991. Go to original source...
  70. Matsumoto, H.: Cell biology of aluminum toxicity and tolerance in higher plants.-Int. Rev. Cytol. 200: 1-46, 2000. Go to original source...
  71. Matsumoto, H.: Plant roots under aluminum stress: Toxicity and tolerance.-In: Waisel, Y., Eshel, A., Kaflcaf, U. (ed.): Plant Roots. Pp. 821-838. Marcel Dekker, New York 2002. Go to original source...
  72. Matsumoto, H., Hirasawa, E., Torikai, H., Takahashi. E.: Localization of absorbed aluminum in pea root and its binding to nucleic acids.-Plant Cell Physiol. 17: 127-137, 1976. Go to original source...
  73. Matsumoto, H., Morimura, S.: Repressed template activity of chromatin of pea roots treated by aluminum.-Plant Cell Physiol. 21: 951-959, 1980.
  74. May, H.M., Nordsrom, D.K.: Assessing the solubilities and reaction kinetics of aluminuous minerals in soils.-In: Ulrich, B., Sumner, M.E. (ed.): Soil Acidity. Pp. 125-148. Springer-Verlag, Berlin-Heidelberg 1991. Go to original source...
  75. Miyasaka, S.C., Hawes, M.: Possible role of root border cells in detection and avoidance of aluminum toxicity.-Plant Physiol. 125: 1978-1987, 2001. Go to original source...
  76. Moody, S.F., Clark, A.E., Bacic, A.: Structure analysis of secreted slime from wheat and cowpea roots.-Phytochemistry 27: 2864-2875, 1988. Go to original source...
  77. Nichol, B.E., Oliveira, L.A.: Effects of aluminum on the growth and distribution of calcium in roots of an aluminum-sensitive cultivar of barley (Hordeum vulgare).-Can. J. Bot. 73: 1849-1858, 1995. Go to original source...
  78. Nichol, B.E., Oliveira, L.A., Glass, A.D.M., Siddiqi, M.Y.: The effects of aluminum on the influx of calcium, potassium, ammonium, nitrate, and phosphate in an aluminum-sensitive cultivar of barley (Hordeum vulgare L.).-Plant Physiol. 101: 1263-1266, 1993. Go to original source...
  79. Obi, I., Ichikawa, Y., Kakutani, T., Senda, M.: Electrophoresis, zeta potential and potential and surface charges of barley mesophyll protoplasts.-Plant Cell Physiol. 30: 129-135. 1989a. Go to original source...
  80. Obi, I., Ichikawa, Y., Kakutani, T., Senda, M.: Electrophoretic studies on plant protoplasts from various sources.-Plant Cell Physiol. 30: 439-444, 1989b. Go to original source...
  81. Olivetti, G.P., Cumming, J.R., Etherton, B.: Membrane potential depolarization of root cap cells precedes aluminum tolerance in snap bean.-Plant Physiol. 109: 123-129, 1995.
  82. Ono, K., Yamamoto, Y., Hachiya, A., Matsumoto, H.: Synergistic inhibition of growth by aluminum and iron of tobacco (Nicotiana tabacum L.) cells in suspension culture.-Plant Cell Physiol. 36: 115-125, 1995.
  83. Osawa, H., Matsumoto, H.: Possible involvement of protein phosphorylation in aluminum-responsive malate efflux from wheat root apex.-Plant Physiol. 126: 411-420, 2001. Go to original source...
  84. Oteiza, P.L.: A mechanism for the stimulatory effect of aluminum on iron-induced lipid peroxidation.-Arch. Biochem. Biophys. 308: 374-379, 1994. Go to original source...
  85. Pineros, M., Tester, M.: Plasma-membrane Ca2+ channels in roots of higher plants and their role in aluminum toxicity.-Plant Soil 155: 119-122, 1993. Go to original source...
  86. Rengel, Z.: Role of calcium in aluminum toxicity.-New Phytol. 121: 199-513, 1992a. Go to original source...
  87. Rengel, Z.: Disturbance of cell Ca2+ homeostasis as a primary trigger of Al toxicity syndrome.-Plant Cell Environ. 15: 931-938, 1992b. Go to original source...
  88. Rengel, Z.: Uptake of aluminium by plant cells.-New Phytol. 134: 389-406, 1996. Go to original source...
  89. Rengel, Z.: Relationship between cytosolic calcium activity and toxicity of aluminium to plant cells.-In: International Symposium on Impact of Potential Tolerance of Plants on the Increased Productivity under Aluminum Stress. Pp. 15-18. Institute of Bioresources, Okayama University, Kurashiki 2000.
  90. Rengel, Z., Elliott, D.C.: Mechanism of aluminum inhibition of net 45Ca2+ uptake by Amaranthus protoplants.-Plant Physiol. 98: 632-638, 1992. Go to original source...
  91. Rengel, Z., Zhang, W.H.: Role of dynamics of intracellular calcium in aluminium toxicity syndrome.-New Phytol. 159: 295-314, 2003. Go to original source...
  92. Richardt, G., Federolf, G., Habermann, E.: The interaction of aluminum and other metal ions with calcium-calmodul-independent phosphodiesterase.-Arch. Toxicol. 57: 257-259, 1985. Go to original source...
  93. Rincon, M., Gonzales, A.: Aluminum partitioning in intact roots of aluminum-tolerant and aluminum-sensitive wheat (Triticum aestivum L.) cultivars.-Plant Physiol. 99: 1021-1028, 1992. Go to original source...
  94. Ryan, P.R., Delhaize, E., Jones, D.L.: Function and mechanism of organic anion exudation from plant roots.-Annu. Rev. Plant Physiol. Plant mol. Biol. 52: 527-560, 2001. Go to original source...
  95. Ryan, P.R., Ditomaso, J.M., Kochian, L.V.: Aluminium toxicity in roots: An investigation of spatial sensitivity and the role of the root cap.-J. exp. Bot. 44: 437-446, 1993. Go to original source...
  96. Ryan, P.R., Kinraide, T.B., Kochian, L.V.: Al3+-Ca2+ interactions in aluminum rhizotoxicity I. Inhibition of root growth is not caused by reduction of calcium uptake.-Planta 192: 98-103, 1994. Go to original source...
  97. Ryan, P.R., Reid, R.J., Smith, F.A.: Direct evaluation of the Ca2+-displacement hypothesis for Al toxicity.-Plant Physiol. 113: 1351-1357, 1997. Go to original source...
  98. Schaeffer, H.J., Walton, J.D.: Aluminum ions induce oat protoplasts to produce an extracellular (1,3)(beta;-D-glucan.-Plant Physiol. 94: 13-19, 1990. Go to original source...
  99. Schildknecht, P.H.P.A., Vidal, B.C.: A role for the cell wall in Al3+ resistance and toxicity: crystallinity and availability of negative charges.-Int. Arch. Biosci. 2002: 1087-1095, 2002.
  100. Schmohl, N., Pilling, J., Horst, W.J.: Pectin methylesterase modulates aluminium sensitivity in Zea mays and Solanum tuberosum.-Physiol. Plant. 109: 419-427, 2000. Go to original source...
  101. Schofield, R.M.S., Pallon, J., Fiskesjo, G., Karlsson, G., Malmqvist, K.G.: Aluminum and calcium distribution patterns in aluminum-intoxicated roots of Allium cepa do not support the calcium-displacement hypothesis and indicated signal-mediated inhibition of root growth.-Planta 205: 175-180, 1998. Go to original source...
  102. Schwarzerova, K., Zelenkova, S., Nick, P., Opatrny, Z.: Aluminum-induced rapid changes in the microtubular cytoskeleton of tobacco cell lines.-Plant Cell Physiol. 43: 207-216, 2002. Go to original source...
  103. Silva, L.R., Smith, J., Moxley, D.F., Carter, T.E., Allen, N.S., Rufty, T.W.: Aluminum accumulation at nuclei of cells in root tip. Fluorescence detection using lumogallion and confocal laser scanning microscopy.-Plant Physiol. 123: 543-552, 2000. Go to original source...
  104. Simonovicova, M., Tamas, L., Huttova, J., Mistrik, I.: Effect of aluminium on oxidative stress related enzyme activities.-Biol. Plant. 48: 261-266, 2004. Go to original source...
  105. Sivaguru, M., Baluska, F., Volkmann, D., Felle, H.H., Horst, WJ.: Impacts of aluminum on the cytoskeleton of the maize root apex. Short-term effects on the distal part of the transition zone.-Plant Physiol. 119: 1073-1082, 1999a. Go to original source...
  106. Sivaguru, M., Fujiwara, T., Samaj, J., Baluska, F., Yang, Z., Osawa, H., Maeda, T., Mori, T., Volkmann, D., Matsumoto, H.: Aluminum-induced 1,3-β-D-glucan inhibits cell-to-cell trafficking of molecules through plasmodesmata: a new mechanism of Al toxicity in plants.-Plant Physiol. 124: 991-1005, 2000. Go to original source...
  107. Sivaguru, M., Horst, W.J.: The distal part of the transition zone is the most aluminum-sensitive apical root zone of maize.-Plant Physiol. 116: 155-163, 1998. Go to original source...
  108. Sivaguru, M., Yamamoto, Y, Matsumoto, H.: Differential impacts of aluminium on microtubule organization depends on growth phase in suspension-cultured tobacco cells.-Physiol. Plant. 107: 110-119, 1999b. Go to original source...
  109. Tabuchi, A., Matsumoto, H.: Changes in cell-wall properties of wheat (Triticum aestivum) roots during aluminum-induced growth inhibition.-Physiol. Plant. 112: 353-358, 2001. Go to original source...
  110. Taylor, G.J.: The physiology of aluminium phytotoxicity.-In: Siegel, H. (ed.): Metal Ions in Biological Systems. Pp. 123-163. Marcel Dekker, New York 1990.
  111. Taylor, G.J.: Overcoming barriers to understanding the cellular basis of aluminum resistance.-Plant Soil 171: 89-103, 1995. Go to original source...
  112. Taylor, G.J., McDonald-Stephens, J.L., Hunter, D.B., Bertsch, P.M., Elmore, D., Rengel, Z., Reid, R.J.: Direct measurement of aluminum uptake and distribution in single cells of Chara corallina.-Plant Physiol. 123: 987-996, 2000. Go to original source...
  113. Tice, K.R., Parker, D.R., DeMason, D.A.: Operationally defined apoplastic and symplastic aluminum fractions in root tips of aluminum-intoxicated wheat.-Plant Physiol. 100: 309-318, 1992. Go to original source...
  114. Van Breemen, N.: Acidification and decline of Central European forests.-Nature 315: 16, 1985. Go to original source...
  115. Vazquez, M., Poschenrieder, C., Corrales, L, Barcelo, J.: Changes in apoplastic aluminum during the initial growth response to aluminum by roots of tolerant maize variety.-Plant Physiol. 119: 435-444, 1999. Go to original source...
  116. Wagatsuma, T.: Characterization of absorption sites for aluminum in the roots.-Soil Sci. Plant Nutr. 29: 499-515, 1983. Go to original source...
  117. Wagatsuma, T., Jujo, K., Ishikawa, S., Nakashima, T.: Aluminum-tolerant protoplasts from roots can be collected with positively charged silica microbeads: A method based on differences in surface negativity.-Plant Cell Physiol. 36: 1493-1502, 1995.
  118. Wissemeier, A.H., Dieming, A., Hergenroder, A., Horst, W.J., Mix-Wanger, G.: Callose formation as parameter for assessing genotypical plant tolerance of aluminium and manganese.-Plant Soil 146: 67-75, 1992. Go to original source...
  119. Wissemeier, A.H., Klotz, F., Horst, W.J.: Aluminum induced callose synthesis in roots of soybean (Glycine max L.).-J. Plant Physiol. 129: 487-492, 1987. Go to original source...
  120. Yamamoto, Y., Kobayashi, Y., Devi, S.R., Rikiishi, S., Matsumoto, H.: Aluminum toxicity is associated with mitochondrial dysfunction and the production of reactive oxygen species in plant cells.-Plant Physiol. 128: 63-72, 2002. Go to original source...
  121. Yamamoto, Y., Kobayashi, Y., Devi, S.R., Rikiishi, S., Matsumoto, H.: Oxidative stress triggered by aluminum in plant roots.-Plant Soil 255: 239-243, 2003. Go to original source...
  122. Yermiyahu, U., Rytwo, G, Brauer, D.K., Kinraide, T.B.: Binding and electrostatic attraction of lanthanum (La3+) and aluminum (Al3+) to wheat root plasma membranes.-J. Membr. Biol. 159: 239-252, 1997. Go to original source...
  123. You, G, Nelson, D.J.: Al3+ versus Ca2+ ion binding to methionine and tyrosine spin-labeled bovine brain calmodulin.-J. inorg. Biochem. 41: 283-291, 1991. Go to original source...
  124. Zhang, W.H., Rengel, Z.: Aluminium induces an increase in cytoplasmic calcium in intact wheat root apical cells.-Aust. J. Plant Physiol. 26: 401-409, 1999. Go to original source...