biologia plantarum

International journal on Plant Life established by Bohumil Němec in 1959

Biologia plantarum 50:586-590, 2006 | DOI: 10.1007/s10535-006-0092-3

Cyclic electron flow around photosystem 1 is required for adaptation to salt stress in wild soybean species Glycine cyrtoloba ACC547

Y. Yang1, D.-A. Jiang1,*, H.-X. Xu1, C.-Q. Yan1,2, S.-R. Hao1
1 State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, P.R. China
2 Ningbo Academy of Agriculture Science, Ningbo, P.R. China

A wild soybean species Glycine cyrtoloba ACC547 was found to possess a high salinity resistance trait. It maintained higher net photosynthetic rate (PN) and maximal photochemical efficiency (Fv/Fm) than the soybean Glycine max cultivar Melrose under salt stress. Saline treatment enlarged the post-illumination transient increase in chlorophyll fluorescence in ACC547 much more than that in Melrose, indicating that its cyclic electron flow around photosystem 1 (CEF1) was accelerated more by salt stress. Additionally, ACC547 maintained higher nonphotochemical dissipation of excitation energy than Melrose under salt stress. It is suggested that the salinity resistance of ACC547 might be due to the CEF1-coupled dissipation of excess excitation energy.

Keywords: chlorophyll fluorescence; dissipation of excitation energy; NaCl; nonphotochemical quenching; photosynthesis
Subjects: anthocyanins; carotenoids; chlorophyll fluorescence; dissipation of excitation energy; gas exchange; Glycine cyrtoloba; photosystem 1; quenching; salt, salinity stress; wild soybean

Received: May 3, 2005; Accepted: January 5, 2006; Published: December 1, 2006  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Yang, Y., Jiang, D.-A., Xu, H.-X., Yan, C.-Q., & Hao, S.-R. (2006). Cyclic electron flow around photosystem 1 is required for adaptation to salt stress in wild soybean species Glycine cyrtoloba ACC547. Biologia plantarum50(4), 586-590. doi: 10.1007/s10535-006-0092-3
Download citation

References

  1. Agarwal, S., Pandey, V.: Antioxidant enzyme responses to NaCl stress in Cassia angustifolia.-Biol. Plant. 48: 555-560, 2004. Go to original source...
  2. Baek, M.H., Kim, J.H., Chung, B.Y., Kim, J.S., Lee, I.S.: Alleviation of salt stress by low dose γ-irradiation in rice.-Biol. Plant. 49: 273-276, 2005. Go to original source...
  3. Bayuelo-Jiménez, J.S., Debouck, D.G., Lynch, J.P.: Growth, gas exchange, water relations and ion composition of Phaseolus species grown under saline conditions.-Field Crops Res. 80: 207-222, 2003. Go to original source...
  4. Chen, H.X., An, S.Z., Li, W.J., Gao, H.Y., Zou, Q.: Enhancement of the Mehler-peroxidase reaction in salt-stressed Rumex K-1 leaves.-Acta bot. sin. 46: 811-818, 2004.
  5. Demmig-Adams, B., Adams, W.W., III: Photoprotection and other responses of plants to high light stress.-Annu. Rev. Plant Physiol. Plant mol. Biol. 43: 599-626, 1992. Go to original source...
  6. Demmig-Adams, B., Adams, W.W., III, Barker, D.H., Logan, B.A., Bowling, D.R., Verhoeven, A.S.: Using chlorophyll fluorescence to assess the fraction of absorbed light allocated to thermal dissipation of excess excitation.-Physiol. Plant. 98: 253-264, 1996. Go to original source...
  7. Demmig, B., Winter, K., Krüger, A., Czygan, F.C.: Photoinhibition and zeaxanthin formation in intact leaves. A possible role of the xanthophylls cycle in the dissipation of excess light energy.-Plant Physiol. 84: 218-224, 1987. Go to original source...
  8. Dietz, K.J., Schreiber, U., Heber, U.: The relationship between the redox state of QA and photosynthesis in leaves at various carbon-dioxide, oxygen and light regimes.-Planta 166: 219-226, 1985. Go to original source...
  9. Ghorbanli, M., Ebrahimzadeh, H., Sharifi, M.: Effects of NaCl and mycorrhizal fungi on antioxidative enzymes in soybean.-Biol. Plant. 48: 575-581, 2004. Go to original source...
  10. Hasegawa, P.M., Bressan, R.A., Zhu, J.K., Bohnert, H.J.: Plant cellular and molecular responses to high salinity.-Annu. Rev. Plant Physiol. Plant mol. Biol. 51: 463-499, 2000. Go to original source...
  11. Horton, P., Ruban, A.V., Walters, R.G.: Regulation of light harvesting in green plants.-Annu. Rev. Plant Physiol. Plant mol. Biol. 47: 655-684, 1996. Go to original source...
  12. Huang, Z.A., Jiang, D.A., Yang, Y., Sun, J.W., Jin, S.H.: Effects of nitrogen deficiency on gas exchange, chlorophyll fluorescence, and antioxidant enzymes in leaves of rice plants.-Photosynthetica 42: 357-364, 2004. Go to original source...
  13. Huner, N.P.A., Maxwell, D.P., Gray, G.R., Savitch, L.V., Krol, M., Ivanov, A.G., Falk, S.: Sensing environmental temperature change through imbalances between energy supply and energy consumption: redox state of photosystem.-Physiol. Plant. 98: 358-364, 1996. Go to original source...
  14. Karimi, G., Ghorbanli, M., Heidari, H., Khavarinejad, R.A., Assareh, M.H.: The effects of NaCl on growth, water relations, osmolytes and ion content in Kochia prostrate.-Biol. Plant. 49: 301-304, 2005. Go to original source...
  15. Kirst, G.O.: Salinity tolerance of eukaryotic marine algae.-Annu. Rev. Plant Physiol. Plant mol. Biol. 41: 21-53, 1990. Go to original source...
  16. Mano, J., Miyake, C., Schreiber, U., Asada, K.: Photoactivation of the electron flow from NADPH to plastoquinone in spinach chloroplasts.-Plant Cell Physiol. 36: 1589-1598, 1995.
  17. Mi, H., Endo, T., Schreiber, U., Asada, K.: Thylakoid membrane-bound, NADPH-specific pyridine nucleotide dehydrogenase complex mediates cyclic electron transport in the cyanobacterium Synechocystis sp. PCC 6803.-Plant Cell Physiol. 36: 661-668, 1995.
  18. Neumann, G., Massonneau, A., Martinoia, E., Römheld, V.: Physiological adaptations to phosphorus deficiency during proteoid root development in white lupin.-Planta 208: 373-382, 1999. Go to original source...
  19. Niknam, V., Bagherzadeh, M., Ebrahimzadeh, H., Sokhansanj, A.: Effect of NaCl on biomass and contents of sugars, proline and proteins in seedlings and leaf explants of Nicotiana tabacum grown in vitro.-Biol. Plant. 48: 613-615, 2004. Go to original source...
  20. Pfannschmidt, T.: Chloroplast redox signals: how photosynthesis controls its own genes.-Trends Plant Sci. 8: 33-41, 2003. Go to original source...
  21. Qiu, N.W., Lu, Q.T., Lu, C.M.: Photosynthesis, photosystem II efficiency and the xanthophyll cycle in the salt-adapted halophyte Atriplex centralasiatica.-New Phytol. 159: 479-486, 2003. Go to original source...
  22. Quick, W.P., Stitt, M.: An examination of factors contributing to non-photochemical quenching of chlorophyll fluorescence in barley leaves.-Biochim. biophys. Acta 977: 287-296, 1989. Go to original source...
  23. Rahnama, H., Ebrahimzadeh, H.: The effect of NaCl on antioxidant enzyme activities in potato seedlings.-Biol. Plant. 49: 93-97, 2005. Go to original source...
  24. Renganathan, M., Dilley, R.A.: Evidence that the intrinsic membrane protein LHC II in thylakoids is necessary for maintaining localized ΔH+ energy coupling.-J. Bioenerg. Biomembr. 26: 101-109, 1994. Go to original source...
  25. Schreiber, U., Endo, T., Mi, H., Asada, K.: Quenching analysis of chlorophyll fluorescence by the saturation pulse method: particular aspects relating to the study of eukaryotic algae and cyanobacteria.-Plant Cell Physiol. 36: 873-882, 1995. Go to original source...
  26. Stoynova-Bakalova, E., Toncheva-Panova, T.: Subcellular adaptation to salinity and irradiance in Dunaliella salina.-Biol. Plant. 47: 233-236, 2003/4. Go to original source...
  27. Ye, J.Y., Mi, H.L., Wang, Y.J., Shen, Y.G.: [The transient postillumination increase in choroplast fluorescence in spinach thylakoids.]-Chin. Sci. Bull. 42: 1867-1871, 1997. [In Chin.]
  28. Ziska, L.H., Seemann, J.R., De Jong, T.M.: Salinity induced limitation on photosynthesis in Prunus salicina, a deciduous tree species.-Plant Physiol. 93: 864-870, 1990. Go to original source...