biologia plantarum

International journal on Plant Life established by Bohumil Nìmec in 1959

Biologia plantarum 54:285-292, 2010 | DOI: 10.1007/s10535-010-0050-y

Influence of water stress on photosynthetic characteristics in barley plants under ambient and elevated CO2 concentrations

A. Robredo1, U. Pérez-López1, M. Lacuesta2, A. Mena-Petite1,*, A. Muñoz-Rueda1
1 Departamento de Biología Vegetal y Ecología, Facultad de Ciencia y Tecnología, Universidad del País Vasco/EHU, Bilbao, Spain
2 Departamento de Biología Vegetal y Ecología, Facultad de Farmacia, Universidad del País Vasco/EHU, Vitoria-Gasteiz, Spain

We evaluated the combined effects of elevated CO2 and water availability on photosynthesis in barley. Soil and plant water content decreased with water stress, but less under elevated CO2 concentration (EC) compared with ambient CO2 concentration (AC). During water stress, stomatal conductance, carboxylation rate, RuBP regeneration, and the rate of triose phosphate utilisation (TPU) were decreased but less when plants grew under EC. Drought treatments caused only a slight effect on maximum photochemical efficiency (variable to maximum fluorescence ratio, Fv/Fm), whereas the actual quantum yield (ΦPS2), maximum electron transport rate (Jmax) and photochemical quenching (qP) were decreased and the non photochemical quenching (NPQ) was enhanced. Under water deficit, the allocation of electrons to CO2 assimilation was diminished by 49 % at AC and by 26 % at EC while the allocation to O2 reduction was increased by 15 % at AC and by 12 % at EC.

Keywords: climate change; drought; electron transport allocation; Hordeum vulgare; photochemical efficiency; quantum yield
Subjects: barley; carboxylation efficiency; chlorophyll fluorescence; CO2 concentration, internal; CO2 concentration, elevated; electron transfer rate; Hordeum vulgare; osmotic potential; photosynthetic rate; quantum yield; relative water content (RWC); respiration; stomatal conductance; stress resistance; water potential; water stress

Received: July 14, 2008; Accepted: December 5, 2008; Published: June 1, 2010  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Robredo, A., Pérez-López, U., Lacuesta, M., Mena-Petite, A., & Muñoz-Rueda, A. (2010). Influence of water stress on photosynthetic characteristics in barley plants under ambient and elevated CO2 concentrations. Biologia plantarum54(2), 285-292. doi: 10.1007/s10535-010-0050-y
Download citation

References

  1. Bunce, J.A.: Responses of stomatal conductance to light, humidity and temperature in winter wheat and barley grown at three concentrations of carbon dioxide in the field. - Global Change Biol. 6: 371-382, 2000. Go to original source...
  2. Centritto, M.: Photosynthetic limitations and carbon partitioning in cherry in response to water deficit and elevated [CO2]. - Agr. Ecosyst. Environ. 106: 233-242, 2005. Go to original source...
  3. Demmig-Adams, B., Adams, W.W., Grace, S.C.: Physiology of light tolerance in plants. - Hort. Rev. 18: 215-246, 1997. Go to original source...
  4. Drake, B.G., González-Meler, M.A., Long, S.P.: More efficient plants: a consequence of rising atmospheric CO2? - Annu. Rev. Plant Physiol. Plant mol. Biol. 48: 609-639, 1997. Go to original source...
  5. Epron, D., Godard, D., Cornic, G., Genty, B.: Limitation of net CO2 assimilation rate by internal resistances to CO2 transfer in the leaves of two tree species (Fagus sylvatica L. and Castanea sativa Mill.). - Plant Cell Environ. 18: 43-51, 1995. Go to original source...
  6. Escalona, J.M., Flexas, J., Medrano, H.: Stomatal and nonstomatal limitations of photosynthesis under water stress in field-grown grapevines. - Aust. J. Plant Physiol. 26: 421-433, 1999. Go to original source...
  7. Fangmeier, A., Chrost, B., Högy, P., Krupinska, K.: CO2 enrichment enhances flag senescence in barley due to greater grain nitrogen sink capacity. - J. exp. Bot. 48: 1835-1841, 2000. Go to original source...
  8. Farquhar, G.D., Von Caemmerer, S.: Modelling of photosynthetic response to environmental conditions. - In: Lange, O.L., Nobel, P.S., Osmond, C.B., Ziegler, H. (ed): Encyclopedia of Plant Phsyiology. Physiological Plant Ecology II. Springer-Verlag, Berlin 1982. Go to original source...
  9. González-Moro, B., Loureiro-Beldarrain, I., Estavillo, J.M., Duñabeitia, M.K., Muñoz-Rueda, A., González-Murua, C.: Effect of photorespiratory C2 acids on CO2 assimilation, PS2 photochemistry and the xanthophyll cycle in maize. - Photosynth. Res. 78: 161-173, 2003. Go to original source...
  10. Habash, D.Z., Paul, M.J., Parry, M.A.J., Keys, A.J., Lawlor, D.W.: Increased capacity for photosynthesis in wheat grown at elevated CO2: the relationship between electron transport and carbon metabolism. - Planta 197: 482-489, 1995. Go to original source...
  11. Hibberd, J.M., Richardson, P., Whitbread, R., Farrar, J.F.: Effects of leaf age, basal meristem and infection with powdery mildew on photosynthesis in barley grown in 700 μmol mol-1 CO2. - New Phytol. 134: 317-325, 1996. Go to original source...
  12. Kleemola, J., Peltonen, J., Peltone-Sinio, P.: Apical development and growth of barley under different CO2 and nitrogen regimes. - J. Agron. Crop Sci. 173: 79-92, 1994. Go to original source...
  13. Kurasová, I., Kalina, J., ©troch, M., Urban, O., ©punda, V.: Response of photosynthetic apparatus of spring barley (Hordeum vulgare L.) to combined effect of elevated CO2 concentration and different growth irradiance. - Photosynthetica 41: 209-219, 2003. Go to original source...
  14. Lambers, H., Chapin III, F.S., Poole, I. (ed.): Plant Physiological Ecology. - Springer-Verlag, New York 1998. Go to original source...
  15. Lawlor, D.W.: Limitation to photosynthesis in water-stressed leaves: stomata vs. metabolism and the role of ATP. - Ann. Bot. 89: 871-885, 2002. Go to original source...
  16. Lawlor, D.W., Cornic, G.: Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants. - Plant Cell Environ. 25: 275-294, 2002. Go to original source...
  17. Lawlor, D.W., Mitchell, R.A.C.: The effects of increasing CO2 on crop photosynthesis and productivity: a review of field studies. - Plant Cell Environ. 14: 807-818, 1991. Go to original source...
  18. Long, S.P., Drake, B.G.: Effect of long-term elevation of CO2 concentration in the field on the quantum yield of photosynthesis of the C3 sedge Scirpus olneyi. - Plant Physiol. 96: 221-226, 1991. Go to original source...
  19. Long, S.P., Drake, B.G.: Photosynthetic CO2 assimilation and rising atmospheric CO2 concentrations. - In: Baker, N.R., Thomas, H. (ed.): Crop Photosynthesis: Spatial and Temporal Determinations. Pp. 69-95. Elsevier Science, New York 1992. Go to original source...
  20. Lopes, M.S., Nogués, S., Araus, J.L.: Nitrogen source and water regime on barley photosynthesis and isotope signature. - Funct. Plant Biol. 31: 995-1003, 2004. Go to original source...
  21. Manderscheid, R., Weigel, H.J.: Do increasing atmospheric concentrations contribute to yield increases of German crops? - J. Agron. Crop Sci. 175: 73-82, 1995. Go to original source...
  22. Melgar, J.C., Syvertsen, J.P., Martínez, V., García-Sánchez, F.: Leaf gas exchange, water relations, nutrient content and growth in citrus and olive seedlings under salinity. - Biol. Plant. 52: 358-390, 2008. Go to original source...
  23. Mena-Petite, A., Muñoz-Rueda, A., Lacuesta, M.: Effect of cold storage treatments and transplanting stress on gas exchange, chlorophyll fluorescence and survival under water limiting conditions of Pinus radiata stock-types. - Eur. J. Forest. Res. 124: 73-82, 2005. Go to original source...
  24. Parsons, R., Ogstone, S.A. (ed.): Photosynthesis Assistant Windows Software for Analysis of Photosynthesis. - Dundee Scientific, Dundee 1997.
  25. Pérez-López, U., Robredo, A., Lacuesta, M., Sgherri, C., Muñoz-Rueda, A., Navari-Izzo, F., Mena-Petite, A.: The oxidative stress caused by salinity in two barley cultivars is mitigated by elevated CO2. - Physiol. Plant. 135: 29-42, 2009. Go to original source...
  26. Picon, C., Guehl, J.M., Aussenac, G.: Growth dynamics, transpiration and water use efficiency in Quercus robur plants submitted to elevated CO2 and drought. - Ann. Sci. forest. 53: 431-446, 1996. Go to original source...
  27. Polley, H.W., Tischler, C.R., Johnson, H.B., Pennington, R.E.: Growth, water relations, and survival of drought exposed seedlings from six maternal families of honey mesquite (Prosopis glandulosa): response to CO2 enrichment. - Tree Physiol. 19: 359-366, 1999. Go to original source...
  28. Robredo, A., Pérez-López, U., Sainz de la Maza, H., González-Moro, B., Lacuesta, M., Mena-Petite, A., Muñoz-Rueda, A.: Elevated CO2 alleviates the impact of drought on barley improving water status by lowering stomatal conductance and delaying its effect on photosynthesis. - Environ. exp. Bot. 59: 252-263, 2007. Go to original source...
  29. Rogers, H.H., Sionit, N., Cure, J.D., Smith, H.M., Binham, G.E.: Influence of elevated CO2 on water relations of soybeans. - Plant Physiol. 74: 233-238, 1984. Go to original source...
  30. Ruiz-Sánchez, M.C., Domingo, R., Pérez-Pastor, A.: Daily variations in water relations of apricot trees under different irrigation regimes. - Biol. Plant. 51: 735-740, 2007. Go to original source...
  31. Sage, R.F.: Acclimation of photosynthesis to increasing atmospheric CO2: the gas exchange perspective. - Photosynth. Res. 39: 351-368, 1994. Go to original source...
  32. Sánchez-Díaz, M., García, J.L., Antolín, M.C., Araus, J.L.: Effects of soil drought and atmospheric humidity on yield, gas exchange, and stable isotope composition of barley. - Photosynthetica 40: 415-421, 2002. Go to original source...
  33. Schindler, C., Lichtenthaler, H.K.: Photosynthetic CO2-assimilation, chlorophyll fluorescence and zeaxanthin accumulation in field grown maple trees in the course of a sunny and a cloudy day. - J. Plant Physiol. 148: 399-412, 1996. Go to original source...
  34. Schreiber, U., Bilger, W., Neubauer, C.: Chlorophyll fluorescence as a nonintrusive indicator for rapid assessment of in vivo photosynthesis. - In: Schulze, E.D., Martyn, M., Cadwell, M.M. (ed.): Ecophysiology of Photoynthesis. - Springer-Verlag, Berlin 1994. Go to original source...
  35. Sicher, R.C.: Responses of nitrogen metabolism in N-sufficient primary barley leaves to plant growth in elevated atmospheric carbon dioxide. - Photosynth. Res. 68: 193-201, 2001. Go to original source...
  36. Tezara, W., Driscoll, S., Lawlor, D.W.: Partitioning of photosynthetic electron flow between CO2 assimilation and O2 reduction in sunflower plants under water deficit. - Photosynthetica 46: 127-134, 2008. Go to original source...
  37. Tezara, W., Mitchell, V., Driscoll, S.P., Lawlor, D.W.: Effects of water deficit and its interaction with CO2 supply on the biochemistry and physiology of photosynthesis in sunflower. - J. exp. Bot. 53: 1781-1791, 2002. Go to original source...
  38. Ulman, P., Èatský, J., Pospí¹ilová, J.: Photosynthetic traits in wheat grown under decreased and increased CO2 concentration, and after transfer to natural CO2 concentration. - Biol. Plant. 43: 227-237, 2000. Go to original source...
  39. Von Caemmerer, S., Farquhar, G.D.: Some relationship between biochemistry of photosynthesis and the gas exchange of leaves. - Planta 153: 376-387, 1981. Go to original source...
  40. Vu, J.C.V., Baker, J.T., Pennanen, A.H., Allen, L.H., Jr., Bowes, G., Boote, K.J.: Elevated CO2 and water deficit effects on photosynthesis, ribulose carboxylase-oxygenase, and carbohydrate metabolism in rice. - Physiol. Plant. 103: 327-339, 1998. Go to original source...
  41. Zhang, S., Dang, Q.L.: Effects of soil temperature and elevated atmospheric CO2 concentration on gas exchange, in vivo carboxylation and chlorophyll fluorescence in jack pine and white birch seedlings. - Tree Physiol. 25: 609-617, 2005. Go to original source...