biologia plantarum

International journal on Plant Life established by Bohumil Nìmec in 1959

Biologia plantarum 57:718-724, 2013 | DOI: 10.1007/s10535-013-0335-z

Exogenous salicylic acid enhances wheat drought tolerance by influence on the expression of genes related to ascorbate-glutathione cycle

G. Z. Kang1,*, G. Z. Li1, G. Q. Liu1, W. Xu1, X. Q. Peng1, C. Y. Wang1, Y. J. Zhu1, T. C. Guo1,*
1 Key Laboratory of Physiology, Ecology and Genetic Improvement of Food Crops in Henan Province, Henan Agricultural University, Zhengzhou, P.R. China

Treatment with 0.5 mM salicylic acid (SA) significantly alleviated growth inhibition induced by drought in wheat seedlings, manifested by less decreassed fresh mass, dry mass, plant height, root length, and less increased lipid peroxidation. Under drought stress, SA significantly increased the content of ascorbate (ASA) and glutathione (GSH). We determined the full-length cDNA sequences of genes encoding the glutathione-S-transferase 1 (GST1) and 2 (GST2) and we also measured the transcription of eight genes related to ASA-GSH cycle. The results indicated that exogenous SA significantly enhanced the transcription of GST1, GST2, glutathione reductase (GR), and monodehydroascorbate reductase (MDHAR) genes during almost the entire drought period, but only increased those of dehydroascorbate reductase (DHAR) at 12 h, glutathione peroxidase (GPX1) at 48 h, phospholipid hydroperoxide glutathione peroxidase (GPX2) at 12 and 24 h, and glutathione synthetase (GSHS) at 12, 24, and 48 h. This implies that SA alleviates the detrimental effects of drought stress on wheat seedling growth by influencing the ASA-GSH cycle.

Keywords: dehydroascorbate reductase; glutathione reductase; glutathione synthetase; glutathione-S-transferase; monodehydroascorbate reductase
Subjects: salicylic acid; stress tolerance; gene expression; ascorbate-glutathione cycle; growth; malondialdehyde; ascorbate; glutathione; amino acid sequences; dehydroascorbate reductase; glutathione peroxidase; glutathione reductase; glutathione-S-transferase; monodehydroascorbate reductase; wheat

Received: June 7, 2012; Accepted: March 28, 2013; Published: December 1, 2013  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Kang, G.Z., Li, G.Z., Liu, G.Q., Xu, W., Peng, X.Q., Wang, C.Y., Zhu, Y.J., & Guo, T.C. (2013). Exogenous salicylic acid enhances wheat drought tolerance by influence on the expression of genes related to ascorbate-glutathione cycle. Biologia plantarum57(4), 718-724. doi: 10.1007/s10535-013-0335-z
Download citation

References

  1. Asada, K.: The water-water cycle in chloroplasts: scavenging of active oxygen species and dissipation of excess photons. - Annu. Rev. Plant Physiol. Plant mol. Biol. 50: 601-639, 1999. Go to original source...
  2. Ashraf, M., Akram, N.A., Arteca, R.N., Foolad, M.R.: The physiological, biochemical and molecular roles of brassinosteroids and salicylic acid in plant processes and salt tolerance. - Crit. Rev. Plant Sci. 29: 162-190, 2010. Go to original source...
  3. Bai, T.H., Li, C.Y., Ma, F.W., Shu, H.R., Han, M.Y.: Exogenous salicylic acid alleviates growth inhibition and oxidative stress induced by hypoxia stress in Malus robusta Rehd. - J. Plant Growth Regul. 28: 358-366, 2009. Go to original source...
  4. Chen, S., Liu, Z., Cui, J., Ding, J., Xia, X., Liu, D., Yu, J.: Alleviation of chilling-induced oxidative damage by salicylic acid pretreatment and related gene expression in eggplant seedlings. - Plant Growth Regul. 65: 101-108, 2011. Go to original source...
  5. Clarke, S.M., Mur, L.A.J., Wood, J.E., Scott, I.M.: Salicylic acid dependent signaling promotes basal thermotolerance but is not essential for acquired thermotolerance in Arabidopsis thaliana. - Plant J. 38: 432-447, 2004. Go to original source...
  6. Ding, C.K., Wang, C.Y., Gross, K.C., Smith, D.L.: Jasmonate and salicylate induce the expression of pathogenesis-related protein genes and increase resistance to chilling injury in tomato fruit. - Planta 214: 895-901, 2002. Go to original source...
  7. Doyle, A.D., Fischer. R.A.: Dry matter accumulation and water use relationships in wheat crops. - Aust. J. agr. Res. 30: 815-829, 1979. Go to original source...
  8. EI-Tayeb, M.A.: Response of barley grains to the interactive effect of salinity and salicylic acid. - Plant Growth Regul. 45: 215-224, 2005. Go to original source...
  9. Elberse, I.A.M., Van Damme, J.M.M., Van Tienderen, H.P.: Plasticity of growth characteristics in wild barley (Hordeum spontaneum) in response to nutrient limitation. - J. Ecol. 91: 371-382, 2003. Go to original source...
  10. Gao, L., Yan, X., Li, X., Guo, G., Hu, Y., Ma, W., Yan, Y.: Proteome analysis of wheat leaf under salt stress by two-dimensional difference gel electrophoresis (2D-DIGE). - Phytochemistry 72: 1180-1181, 2011. Go to original source...
  11. Hayata, Q., Hayata, S., Irfan, M., Ahmad, A.: Effect of exogenous salicylic acid under changing environment: a review. - Environ. exp. Bot. 68: 14-25, 2010. Go to original source...
  12. He, Y., Zhu Z.J.: Exogenous salicylic acid alleviates NaCl toxicity and increases antioxidative enzyme activity in Lycopersicon esculentum. - Biol. Plant. 52: 792-795, 2008. Go to original source...
  13. Horváth, E., Pál, M., Szalai, G, Páldi, E., Janda, T.: Exogenous 4-hydroxybenzoic acid and salicylic acid modulate the effect of short-term drought and freezing stress on wheat plants. - Biol. Plant. 51: 480-487, 2007a. Go to original source...
  14. Horváth, E., Szalai, G., Janda, T.: Induction of abiotic stress tolerance by salicylic acid signaling. - J. Plant Growth Regul. 26: 290-300, 2007b. Go to original source...
  15. Kampfenkel, K., Van Montagu, M., Inze, D.: Extraction and determination of ascorbate and dehydroascorbate from plant tissue. - Anal. Biochem. 225: 165-167, 1995. Go to original source...
  16. Kang, G.Z., Wang, C.H., Sun, G.C., Wang, Z.X.: Salicylic acid changes activities of H2O2-metabolizing enzymes and increases the chilling tolerance of banana seedlings. - Environ. exp. Bot. 50: 9-15, 2003. Go to original source...
  17. Kang, H.M., Saltveit, M.E.: Chilling tolerance of maize, cucumber and rice seedling leaves and roots are differentially affected by salicylic acid. - Physiol. Plant. 115: 571-576, 2002. Go to original source...
  18. Kim, H., Mun, J.H., Byun, B.H., Hwang, H.J., Kwon, Y.M., Kim, S.G.: Molecular cloning and characterization of the gene encoding osmotin protein in Petunia hybrida. - Plant Sci. 162: 745-752, 2002. Go to original source...
  19. Kuĵniak, E., Sk³odowska, M.: Ascorbate, glutathione and related enzymes in chloroplasts of tomato leaves infected by Botrytis cinerea. - Plant Sci. 160: 723-731, 2001. Go to original source...
  20. Li, M., Liang, D., Pu, F., Ma, F., Hou, C., Liu, T.: Ascorbate levels and the activity of key enzymes in ascorbate biosynthesis and recycling in the leaves of 22 Chinese persimmon cultivars. - Sci. Hort. 120: 250-256, 2009. Go to original source...
  21. Li, Y.H., Liu, Y.J., Xu, X.L., Jin, M., An, L.Z., Zhang, H.: Effect of 24-epibrassinolide on drought stress-induced changes in Chorispora bungeana. - Biol. Plant. 56: 187-191, 2012. Go to original source...
  22. Liu, Y., Yuan, Y., Liu, Y., Fu, J., Zheng, J., Wang, G.: Gene families of maize glutathione-ascorbate redox cycle respond differently to abiotic stresses. - J. Plant Physiol. 169: 183-192, 2012. Go to original source...
  23. Livak, K.J., Schmittgen, T.D.: Analysis of relative gene expression data using real-time quantitative PCR and the 2-DDCT method. - Methods 25: 402-408, 2001. Go to original source...
  24. Ma, Y.H., Ma, F.W., Zhang, J.K., Li, M.Y., Wang, Y.H., Liang, D.: Effects of high temperature on activities and gene expression of enzymes involved in ascorbate-glutathione cycle in apple leaves. - Plant Sci. 175: 761-766, 2008. Go to original source...
  25. Mittler, R.: Oxidative stress, antioxidants and stress tolerance. - Trends Plant Sci. 7: 405-410, 2002. Go to original source...
  26. Mutlu, S., Atici, Ö., Nalbantoglu, B.: Effects of salicylic acid and salinity on apoplastic antioxidant enzymes in two wheat cultivars differing in salt tolerance. - Biol. Plant. 53: 334-338, 2009. Go to original source...
  27. Prabhavathi, V.R., Rajam, M.V.: Polyamine accumulation in transgenic eggplant enhances tolerance to multiple abiotic stresses and fungal resistance. - Plant Biotechnol. J. 24: 273-282, 2007. Go to original source...
  28. Saruhan, N., Saglam, A., Kadioglu, A.: Salicylic acid pretreatment induces drought tolerance and delays leaf rolling by inducing antioxidant systems in maize genotypes. - Acta Physiol. Plant 34: 97-106, 2012. Go to original source...
  29. Senaratna, T., Touchell, D., Bunn, E., Dixon, K.: Acetyl salicylic acid (aspirin) and salicylic acid induce multiple stress tolerance in bean and tomato plants. - Plant Growth Regul. 30: 157-161, 2000. Go to original source...
  30. Shan, C., Liang, Z.: Jasmonic acid regulates ascorbate and glutathione metabolism in Agropyron cristatum leaves under water stress. - J. Plant Physiol. 178: 130-139, 2010. Go to original source...
  31. Smirnoff, N.: Plant resistance to environmental stress. - Curr. Opin. Biotechnol. 9: 214-219, 1998. Go to original source...
  32. Smith, I.: Stimulation of glutathione synthesis in photorespiring plants by catalase inhibitors. - Plant Physiol. 79: 1044-1047, 1985. Go to original source...
  33. Snyman, M., Cronjé, M.J.: Modulation of heat shock factors accompanies salicylic acid-mediated potentiation of Hsp70 in tomato seedlings. - J. exp. Bot. 59: 2125-2132, 2008. Go to original source...
  34. Thapa, G., Dey, M., Sahoo, L., Panda, S.K.: An insight into the drought stress induced alterations in plants. - Biol. Plant. 55: 603-613, 2011. Go to original source...
  35. Zheng, Y.H., Jia, A.J., Ning, T.Y., Xu, J.L., Li, Z.J., Jiang, G.M.: Potassium nitrate application alleviates sodium chloride stress in winter wheat cultivars differing in salt tolerance. - J. Plant Physiol. 165: 1455-1465, 2008. Go to original source...
  36. Zhou, Z.S., Guo, K., Elbaz, A., Yang, Z.M.: Salicylic acid alleviates mercury toxicity by preventing oxidative stress in roots of Medicago sativa. - Environ. exp. Bot. 65: 27-34, 2009. Go to original source...