biologia plantarum

International journal on Plant Life established by Bohumil Němec in 1959

Biologia plantarum 60:86-94, 2016 | DOI: 10.1007/s10535-015-0561-7

A rice mutant defective in antioxidant-defense system and sodium homeostasis possesses increased sensitivity to salt stress

K. -C. Lin1, W. -S. Jwo2, N. N. P. Chandrika1, T. -M. Wu1, M. -H. Lai2, C. -S. Wang3, C. -Y. Hong1,*
1 Department of Agricultural Chemistry, National Taiwan University, Taipei, Taiwan
2 Taiwan Agricultural Research Institute, Wufeng, Taichung, Taiwan
3 Department of Agronomy, National Chung-Hsing University, Taichung, Taiwan

Screening salt-sensitive mutants is a powerful method to identify genes associated with salt tolerance. We used forward genetic screening with sodium azide-mutated rice (Oryza sativa L. cv. Tainung 67) to identify mutants showing hypersensitivity to salt stress. A new mutant line, named salt hypersensitive 1 (shs1) and exhibiting a severe salt-sensitivity when grown under a high NaCl concentration, was identified; the salt hypersensitivity was caused by duplicate recessive epistasis with mutations likely in two different loci. The shs1 salt sensitive phenotypes included a decreased seed germination rate, reduced shoot height and root length, severe and quick wilting, and overaccumulation of sodium ions in shoots as compared with wild-type plants. In addition, shs1 showed a decreased photosynthetic efficiency and enhanced hydrogen peroxide (H2O2) production under the salt stress. An increased superoxide dismutase activity and decreased catalase activity were responsible for the hyperaccumulation of H2O2 in shs1. The hypersensitivity of shs1 to the salt stress might be caused by an impaired antioxidant machinery and cellular Na+ homeostasis.

Keywords: catalase; chlorophyll fluorescence; hydrogen peroxide; Oryza sativa; oxidative stress; salt hypersensitive mutant; superoxide dismutase
Subjects: rice mutants; antioxidative defense system; sodium; catalase; chlorophyll fluorescence; hydrogen peroxide; potassium; superoxide dismutase

Received: March 22, 2015; Revised: May 5, 2015; Accepted: May 7, 2015; Published: January 1, 2016  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Lin, K.-C., Jwo, W.-S., Chandrika, N.N.P., Wu, T.-M., Lai, M.-H., Wang, C.-S., & Hong, C.-Y. (2016). A rice mutant defective in antioxidant-defense system and sodium homeostasis possesses increased sensitivity to salt stress. Biologia plantarum60(1), 86-94. doi: 10.1007/s10535-015-0561-7
Download citation

References

  1. Alessandra, C., Giuseppina, R., Riccardo, A., Rodolfo, F., Paraskevi, T.: Functions of amine oxidases in plant development and defense. - Trends Plant Sci. 11: 80-88, 2006. Go to original source...
  2. Amrutha, R.N., Sekhar, P.N., Varshney, R.K., Kishor, P.; Genome-wide analysis and identification of genes related to potassium transporter families in rice (Oryza sativa L.). - Plant Sci. 172: 708-721, 2007. Go to original source...
  3. Asada, K.: The water-water cycle in chloroplasts: scavenging of active oxygen and dissipation of excess photons. - Annu. Rev. Plant Physiol. Plant mol. Biol. 50: 601-639, 1999. Go to original source...
  4. Bañuelos, M.A., Garciadeblas, B., Cubero, B., Rodríguez-Navarro, A.: Inventory and functional characterization of the HAK potassium transporters of rice. - Plant Physiol. 130: 784-795, 2002. Go to original source...
  5. Bradford, M.M.: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. - Anal. Biochem. 72: 248-254, 1976. Go to original source...
  6. Chikelu, M., Rownak, A., Shri, M.J., Glenn, B.G., Francisco, J.Z.A.: Induced mutations for enhancing salinity tolerance in rice. - In: Jenks, M.A., Hasegawa, P.M., Jain, S.M. (ed.); Advances in Molecular Breeding Towards Drought and Salt Tolerant Crops. Pp. 413-454. Springer, Dordrecht 2007.
  7. Davenport, R., James, R. A., Zakrisson-Plogander, A., Tester, M., Munns, R.: Control of sodium transport in durum wheat. - Plant Physiol. 137: 807-818, 2005. Go to original source...
  8. Davenport, R. J., Muñoz-Mayor, A., Jha, D., Essah, P. A., Rus, A., Tester, M.: The Na+ transporter AtHKT1 controls xylem retrieval of Na+ in Arabidopsis. - Plant Cell Environ. 30; 497-507, 2007. Go to original source...
  9. Foyer, C.H., Harbison, J.: Oxygen metabolism and the regulation of photosynthetic electron transport. - In: Foyer, C.H., Mullineaux, P. (ed.) Causes of Photo-oxidative Stresses and Amelioration of Defense Systems in Plants. Pp. 1-42. CRC Press, Boca Raton 1994. Go to original source...
  10. Flowers, T.J., Hajibagheri, M.A., Yeo, A.R.: Ion accumulation in the cell walls of rice plants growing under saline conditions: evidence for the Oertli hypothesis. - Plant Cell Environ. 14: 319-325, 1991. Go to original source...
  11. Fukuda, A., Nakamura, A., Tagiri, A., Tanaka, H., Miyao, A., Hirochika, H., Tanaka, Y.: Function, intracellular localization and the importance in salt tolerance of a vacuolar Na+/H+ antiporter from rice. - Plant Cell Physiol. 45: 149-159, 2004. Go to original source...
  12. Giannopolitis, C.N., Ries, S.K.: Superoxide dismutases: I. Occurrence in higher plants. - Plant Physiol. 59: 309-314, 1977. Go to original source...
  13. Gill, S.S., Tuteja, N.: Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. - Plant Physiol. Biochem. 48: 909-930, 2010. Go to original source...
  14. Golldack, D., Quigley, F., Michalowski, C.B., Kamasani, U.R., Bohnert, H.J.: Salinity stress-tolerant and sensitive rice (Oryza sativa L.) regulate AKT1-type potassium channel transcripts differently. - Plant mol. Biol. 51: 71-81, 2003. Go to original source...
  15. Gregorio, G.B., Senadhira, D., Mendoza, R. D.: Screening Rice for Salinity Tolerance. - IRRI Discussion Paper No. 22. International Rice Research Institute, Manila 1997.
  16. Hong, C.Y., Chao, Y.Y., Yang, M.Y., Cho, S.C., Kao, C.H.; Na+ but not Cl- or osmotic stress is involved in NaClinduced expression of glutathione reductase in roots of rice seedlings. - J. Plant Physiol. 166: 1598-1606, 2009. Go to original source...
  17. Hossain, M.A., Nakano, Y., Asada, K.: Monodehydroascorbate reductase in spinach chloroplast and its participation in regeneration of ascorbate for scavenging hydrogen peroxide. - Plant Cell Physiol. 11: 351-358, 1984.
  18. Huang, X.Y., Chao, D.Y., Gao, J.P., Zhu, M.Z., Shi, M., Lin, H.X.: A previously unknown zinc finger protein, DST, regulates drought and salt tolerance in rice via stomatal aperture control. - Genes Dev. 23: 1805-1817, 2009. Go to original source...
  19. Huang, Y.G., Zhang, F., Wu, J., Chen, J., Zhou, M.: Differences in physiological traits among salt-stressed barley genotypes. - Commun. Soil Sci. Plant Anal. 37: 557-570, 2006. Go to original source...
  20. Igarashi, Y., Yoshiba, Y., Sanada, Y., Yamaguchi-Shinozaki, K., Wada, K., Shinozaki, K.: Characterization of the gene for Δ1-pyrroline-5-carboxylate synthetase and correlation between the expression of the gene and salt tolerance in Oryza sativa L. - Plant mol. Biol. 33: 857-865, 1997. Go to original source...
  21. Islam, M.R., Salam, M.A., Hassan, L., Collard, B.C.Y., Singh, R.K., Gregorio, G.B.: QTL mapping for salinity tolerance at seedling stage in rice. - J. Food agr. Sci. 23: 137-146, 2011. Go to original source...
  22. James, R.A., Davenport, R.J., Munns, R.: Physiological characterization of two genes for Na+ exclusion in durum wheat, Nax1 and Nax2. - Plant Physiol. 142: 1537-1547, 2006. Go to original source...
  23. Kitajima, M., Butler, W.L.: Quenching of chlorophyll fluorescence and primary photochemistry in chloroplasts by dibromothymoquinone. - Biochim. biophys. Acta 376: 105-115, 1975. Go to original source...
  24. Martinez-Atienza, J., Jiang, X., Garciadeblas, B., Mendoza, I., Zhu, J.K., Pardo, J.M., Quintero, F.J.: Conservation of the salt overly sensitive pathway in rice. - Plant Physiol. 143; 1001-1012, 2007. Go to original source...
  25. Mahajan, S., Tuteja, N.: Cold, salinity and drought stresses: an overview. - Arch. Biochem. Biophys. 444: 139-158, 2005. Go to original source...
  26. Miao, Y., Dong, L., Wang, P., Wang, X.C., Chen, J., Miao, C., Song, C.P.: An Arabidopsis glutathione peroxidase functions as both a redox transducer and a scavenger in abscisic acid and drought stress responses. - Plant Cell 18; 2749-2766, 2006. Go to original source...
  27. Munns, R.: Physiological processes limiting plant growth in saline soil: some dogmas and hypotheses. - Plant Cell Environ. 13: 143-160, 1993. Go to original source...
  28. Munns, R.: Comparative physiology of salt and water stress. - Plant Cell Environ. 25: 239-250, 2002. Go to original source...
  29. Munns, R., James, R.A., Lauchli, A.: Approaches to increasing the salt tolerance of wheat and other cereals. - J. exp. Bot. 57: 1025-1043, 2006. Go to original source...
  30. Munns, R., James, R.A., Xu, B., Athman, A., Conn, S.J., Jordans, C., Byrt, C.S., Hare, R.A., Tyerman, S.D., Tester, M., Plett, D., Gilliham, M.: Wheat grain yield on saline soils is improved by an ancestral Na+ transporter gene. - Nat. Biotechnol. 30: 360-364, 2012. Go to original source...
  31. Munns, R., Tester, M.: Mechanisms of salinity tolerance. - Annu. Rev. Plant Biol. 59: 651-681, 2008. Go to original source...
  32. Ogawa, D., Abe, K., Miyao, A., Kojima, M., Sakakibara, H., Mizutani, M., Takeda, S.: RSS1 regulates the cell cycle and maintains meristematic activity under stress conditions in rice. - Nat. Commun. 2: 1-11, 2011. Go to original source...
  33. Orozco-Cárdenas, M.L., Ryan, C.: Hydrogen peroxide is generated systemically in plant leaves by wounding and systemically in via the octadecanoid pathway. - Proc. nat. Acad. Sci. USA 96: 6553-6557, 1999. Go to original source...
  34. Patterson, B.D., Macrae, E.A., Ferguson, I.B.: Estimation of hydrogen peroxide in plant extracts using titanium (IV). - Anal. Biochem. 139: 487-492, 1984. Go to original source...
  35. Prasad, S.R., Bagali, P.G., Shailaja, H., Shashidhar, H.E., Hittalmani, S.: Molecular mapping of quantitative trait loci associated with seedling tolerance to salt stress in rice (Oryza sativa L.). - Curr. Sci. 78: 162-164, 2000.
  36. Ren, Z.H., Gao, J.P., Li, L.G., Cai, X.L., Huang, W., Chao, D.Y., Zhu, M.Z., Wang, Z.Y., Luan, S., Lin, H.X.: A rice quantitative trait locus for salt tolerance encodes a sodium transporter. - Nat. Genet. 37: 1141-1146, 2005. Go to original source...
  37. Roland, F.B., Irwin, W.S.: A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. - J. biol. Chem. 195: 133-140, 1951. Go to original source...
  38. Sabouri, H., Rezai, A.M., Moumeni, A., Kavousi, A., Katouzi, M., Sabouri, A.: QTLs mapping of physiological traits related to salt tolerance in young rice seedlings. - Biol Plant. 53: 657-662, 2009. Go to original source...
  39. Serra, T.S., Figueiredo, D.D., Cordeiro, A.M., Almeida, D.M., Lourenço, T., Abreu, I.A., Sebastián, A., Fernandes, L., Contreras-Moreira, B., Oliveira, M.M.: OsRMC, a negative regulator of salt stress response in rice, is regulated by two AP2/ERF transcription factors. - Plant mol. Biol. 82: 1-17, 2013. Go to original source...
  40. Shi, H., Quintero, F.J., Pardo, J.M., Zhu, J.K.: The putative plasma membrane Na+/H+ antiporter SOS1 controls longdistance Na+ transport in plants. - Plant Cell 14: 465-477, 2002. Go to original source...
  41. Sunarpi Horie, T., Motoda, J., Kubo, M., Yang, H., Yoda, K., Horie, R., Chan, W.Y., Leung, H.Y., Hattori, K., Konomi, M., Osumi, M., Yamagami, M., Schroeder, J.I., Uozumi, N.; Enhanced salt tolerance mediated by AtHKT1 transporterinduced Na unloading from xylem vessels to xylem parenchyma cells. - Plant J. 44: 928-938, 2005. Go to original source...
  42. Thomson, M.J., Ocampo, M., Egdane J., Rahman M.A., Sajise, A.G., Adorada, D.L., Tumimbang-Raiz, E., Blumwald, E., Seraj, Z.I., Singh, R.K., Gregorio, G.B., Ismail, A.M.; Characterizing the saltol quantitative trait locus for salinity tolerance in rice. - Rice 3: 148-160, 2010. Go to original source...
  43. Waters, S., Gilliham, M., Hrmova, M.: Plant high-affinity potassium (HKT) transporters involved in salinity tolerance; structural insights to probe differences in ion selectivity. - Int. J. mol. Sci. 14: 7660-7680, 2013. Go to original source...
  44. Wu, T.M., Lin, W.R., Kao, C.H., Hong, C.Y.: Gene knockout of glutathione reductase 3 results in increased sensitivity to salt stress in rice. - Plant mol. Biol. 87: 555-564, 2015. Go to original source...
  45. Yao, X., Horie, T., Xue, S., Leung, H.Y., Katsuhara, M.E., Brodsky, D., Wu, Y.I., Schroeder, J.: Differential sodium and potassium transport selectivities of the rice OsHKT2;1 and OsHKT2;2 transporters in plant cells. - Plant Physiol. 152: 341-355, 2010. Go to original source...
  46. Yang, Y.L., Xu, S.J., An, L.Z., Chen, N.L.: NADPH oxidasedependent hydrogen peroxide production, induced by salinity stress, may be involved in the regulation of total calcium in roots of wheat. - J. Plant Physiol. 164: 1429-1435, 2007. Go to original source...
  47. Yoshida, S., Forno, D.A., Cock, J.H., Gomez, K.A.: Laboratory Manual for Physiological Studies of Rice. 2nd Ed. - The International Rice Research Institute, Los Baños 1972.
  48. Zhang, Z., Zhang, Q., Wu, J., Zheng, X., Zheng, S., Sun, X., Qiu, Q., Lu, T.: Gene knockout study reveals that cytosolic ascorbate peroxidase 2 (OsAPX2) plays a critical role in growth and reproduction in rice under drought, salt and cold stresses. - PLoS ONE 8: e57472, 2013. Go to original source...
  49. Zheng, L., Shannon, M.C., Lesch, S.M.: Timing of salinity stress affects rice growth and yield components. - Agr. Water Manage. 48: 191-206, 2001. Go to original source...
  50. Zhou, J., Wang, F., Deng, P., Jing, W., Zhang, W.; Characterization and mapping of a salt-sensitive mutant in rice (Oryza sativa L.). - J. Integr. Plant Biol. 55: 504-513, 2013. Go to original source...