biologia plantarum

International journal on Plant Life established by Bohumil Němec in 1959

Biologia plantarum 61:417-426, 2017 | DOI: 10.1007/s10535-017-0706-y

Cytosolic GAPDH: a key mediator in redox signal transduction in plants

S. S. Yang1,*, Q. H. Zhai1
1 College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, P.R. China

Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) serves not only as a key enzyme in glycolysis, but also as a multifunctional protein in other biological processes, especially in response to abiotic stresses in plants. Cytosolic GAPDH (GAPC) is a typical redox protein with selected catalytic cysteine, which undergoes reversible redox post-translational modifications (RPTMs) on its thiol group by reacting with hydrogen peroxide and nitric oxide related species. Moreover, the modified GAPC may interact with certain signal transmitters such as phosphatidic acid, phospholipase D, and osmotic stress-activated protein kinase. All these observations suggest that GAPC serve as a key mediator in redox signal transduction in plants. In this review, we provide an up-to-date insight into molecular mechanisms after H2O2- and NO-dependent oxidation of GAPC. We also discuss GAPC catalytic functions and potential functions as a modified protein by RPTMs.

Keywords: abiotic stresses; cysteine modification; glycolysis; hydrogen peroxide; nitric oxide; post-translational modifications
Subjects: glyceraldehyde-3-phosphate dehydrogenase; signal transduction; glycolysis; hydrogen peroxide; nitric oxide; post-translational modifications; cystein modification

Received: January 15, 2016; Revised: September 16, 2016; Accepted: October 13, 2016; Published: September 1, 2017  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Yang, S.S., & Zhai, Q.H. (2017). Cytosolic GAPDH: a key mediator in redox signal transduction in plants. Biologia plantarum61(3), 417-426. doi: 10.1007/s10535-017-0706-y
Download citation

Supplementary files

Download filebpl-201703-0002_S1.pdf

File size: 1.55 MB

References

  1. Akter, S., Huang, J., Waszczak, C., Jacques, S., Gevaert, K., Van Breusegem, F., Messens, J.: Cysteines under ROS attack in plants: a proteomics view. - J. exp. Bot. 66: 2935-2944, 2015. Go to original source...
  2. Astier, J., Rasul, S., Koen, E., Manzoor, H., Besson-Bard, A., Lamotte, O., Jeandroz, S., Durner, J., Lindermayr, C., Wendehenne, D.: S-nitrosylation: an emerging posttranslational protein modification in plants. - Plant Sci. 181: 527-533, 2011. Go to original source...
  3. Bae, M.S., Cho, E.J., Choi, E.Y., Park, O.K.: Analysis of the Arabidopsis nuclear proteome and its response to cold stress. - Plant J. 36: 652-663, 2003. Go to original source...
  4. Baek, D., Jin, Y., Jeong, J.C., Lee, H.J., Moon, H., Lee, J., Shin, D., Kang, C.H., Kim, D.H., Nam, J., Lee, S.Y., Yun, D.J.: Suppression of reactive oxygen species by glyceraldehyde-3-phosphate dehydrogenase. - Phytochemistry 69: 333-338, 2008. Go to original source...
  5. Bedhomme, M., Adamo, M., Marchand, C.H., Couturier, J., Rouhier, N., Lemaire, S.D., Zaffagnini, M., Trost, P.: Glutathionylation of cytosolic glyceraldehyde-3-phosphate dehydrogenase from the model plant Arabidopsis thaliana is reversed by both glutaredoxins and thioredoxins in vitro. - Biochem. J. 445: 337-347, 2012. Go to original source...
  6. Benhar, M., Forrester, M.T., Stamler, J.S.: Protein denitrosylation: enzymatic mechanisms and cellular functions. - Nat. Rev. mol. cell. Biol. 10: 721-732, 2009. Go to original source...
  7. Brinkmann, H., Cerff, R., Salomon, M., Soll, J.: Cloning and sequence analysis of cDNAs encoding the cytosolic precursors of subunits GapA and GapB of chloroplast glyceraldehyde-3-phosphate dehydrogenase from pea and spinach. - Plant mol. Biol. 13: 81-94, 1989. Go to original source...
  8. Burza, A.M., Pekala, I., Sikora, J., Siedlecki, P., Małagocki, P., Bucholc, M., Koper, L., Zielenkiewicz, P., Dadlez, M., Dobrowolska, G.: Nicotiana tabacum osmotic stressactivated kinase is regulated by phosphorylation on Ser-154 and Ser-158 in the kinase activation loop. - J. biol. Chem. 281: 34299-34311, 2006. Go to original source...
  9. Demidchik, V.: Mechanisms of oxidative stress in plants: from classical chemistry to cell biology. - Environ. exp. Bot. 109: 212-228, 2015. Go to original source...
  10. Ferrer-Sueta, G., Manta, B., Botti, H., Radi, R., Trujillo, M., Denicola, A.: Factors affecting protein thiol reactivity and specificity in peroxide reduction. - Chem. Res. Toxicol. 24: 434-450, 2011. Go to original source...
  11. Fujii, H., Zhu, J.K.: Arabidopsis mutant deficient in 3 abscisic acid-activated protein kinases reveals critical roles in growth, reproduction, and stress. - Proc. nat. Acad. Sci. USA 106: 8380-8385, 2009. Go to original source...
  12. Fujita, Y., Nakashima, K., Yoshida, T., Katagiri, T., Kidokoro, S., Kanamori, N., Umezawa, T., Fujita, M., Maruyama, K., Ishiyama, K., Kobayashi, M., Nakasone, S., Yamada, K., Ito, T., Shinozaki, K., Yamaguchi-Shinozaki, K.: Three SnRK2 protein kinases are the main positive regulators of abscisic acid signaling in response to water stress in Arabidopsis. - Plant Cell Physiol. 50: 2123-2132, 2009. Go to original source...
  13. Go, Y.M., Chandler, J.D., Jones, D.P.: The cysteine proteome. - Free Radicals Biol. Med. 84: 227-245, 2015. Go to original source...
  14. Guo, L., Devaiah, S.P., Narasimhan, R., Pan, X.Q., Zhang, Y.Y., Zhang, W.H., Wang, X.M.: Cytosolic glyceraldehyde-3-phosphate dehydrogenases interact with phospholipase Dδ to transduce hydrogen peroxide signals in the Arabidopsis response to stress. - Plant Cell 24: 2200-2212, 2012. Go to original source...
  15. Guo, L., Ma, F., Wei, F., Fanella, B., Allen, D.K., Wang, X.M.: Cytosolic phosphorylating glyceraldehyde-3-phosphate dehydrogenases affect Arabidopsis cellular metabolism and promote seed oil accumulation. - Plant Cell 26: 3023-3035, 2014. Go to original source...
  16. Han, S.J., Wang, Y., Zheng, X.Y., Jia, Q., Zhao, J.P., Bai, F., Hong, Y.G., Liu, Y.L.: Cytoplastic glyceraldehyde-3-phosphate dehydrogenases interact with ATG3 to negatively regulate autophagy and immunity in Nicotiana benthamiana. - Plant Cell 27: 1316-1331, 2015. Go to original source...
  17. Hancock, J.T., Henson, D., Nyirenda, M., Desikan, R., Harrison, J., Lewis, M., Hughes, J., Neill, S.J.: Proteomic identification of glyceraldehyde 3-phosphate dehydrogenase as an inhibitory target of hydrogen peroxide in Arabidopsis. - Plant Physiol. Biochem. 43: 828-835, 2005. Go to original source...
  18. Henry, E., Fung, N., Liu, J., Drakakaki, G., Coaker, G.: Beyond glycolysis: GAPDHs are multi-functional enzymes involved in regulation of ROS, autophagy, and plant immune responses. - PLoS Genet. 11: e1005199, 2015. Go to original source...
  19. Hess, D.T., Matsumoto, A., Kim, S.O., Marshall, H.E., Stamler, J.S.: Protein S-nitrosylation: purview and parameters. - Nat. Rev. mol. cell. Biol. 6: 150-166, 2005. Go to original source...
  20. Hildebrandt, T., Knuesting, J., Berndt, C., Morgan, B., Scheibe, R.: Cytosolic thiol switches regulating basic cellular functions: GAPDH as an information hub? - Biol. Chem. 396: 523-537, 2015. Go to original source...
  21. Holtgrefe, S., Gohlke, J., Starmann, J., Druce, S., Klocke, S., Altmann, B., Wojtera, J., Lindermayr, C., Scheibe, R.: Regulation of plant cytosolic glyceraldehyde 3-phosphate dehydrogenase isoforms by thiol modifications. - Physiol. Plant. 133: 211-228, 2008. Go to original source...
  22. Huang, G.T., Ma, S.L., Bai, L.P., Zhang, L., Ma, H., Jia, P., Liu, J., Zhong, M., Guo, Z.F.: Signal transduction during cold, salt, and drought stresses in plants. - Mol. Biol. Rep. 39: 969-987, 2012. Go to original source...
  23. Jeong, M.J., Park, S.C., Kwon, H.B., Byun, M.O.: Isolation and characterization of the gene encoding glyceraldehyde-3-phosphate dehydrogenase. - Biochem. biophys. Res. Commun. 278: 192-196, 2000. Go to original source...
  24. Jiang, Y., Yang, B., Harris, N.S., Deyholos, M.K.: Comparative proteomic analysis of NaCl stress-responsive proteins in Arabidopsis roots. - J. exp. Bot. 58: 3591-3607, 2007. Go to original source...
  25. Krasensky, J., Jonak, C.: Drought, salt, and temperature stressinduced metabolic rearrangements and regulatory networks. - J. exp. Bot. 63: 1593-1608, 2012. Go to original source...
  26. Kumaraswamy, G.K., Guerra, T., Qian, X., Zhang, S., Bryant, D.A., Dismukes, G.C.: Reprogramming the glycolytic pathway for increased hydrogen production in cyanobacteria: metabolic engineering of NAD+-dependent GAPDH. - Energy Environ. Sci. 6: 3722-3731, 2013. Go to original source...
  27. Lin, A., Wang, Y., Tang, J., Xue, P., Li, C., Liu, L., Hu, B., Yang, F., Loake, G.J., Chu, C.: Nitric oxide and protein Snitrosylation are integral to hydrogen peroxide-induced leaf cell death in rice. - Plant Physiol. 158: 451-464, 2012. Go to original source...
  28. Lindermayr, C., Saalbach, G., Durner, J.: Proteomic identification of S-nitrosylated proteins in Arabidopsis. - Plant Physiol. 137: 921-930, 2005. Go to original source...
  29. Liu, Y., Schiff, M., Czymmek, K., Tallóczy, Z., Levine, B., Dinesh-Kumar, S.P.: Autophagy regulates programmed cell death during the plant innate immune response. - Cell 121: 567-577, 2005. Go to original source...
  30. Morigasaki, S., Shimada, K., Ikner, A., Yanagida, M., Shiozaki, K.: Glycolytic enzyme GAPDH promotes peroxide stress signaling through multistep phosphorelay to a MAPK cascade. - Mol. Cell 30: 108-113, 2008. Go to original source...
  31. Munoz-Bertomeu, J., Cascales-Minana, B., Irles-Segura, A., Mateu, I., Nunes-Nesi, A., Fernie, A.R., Segura, J., Ros, R.: The plastidial glyceraldehyde-3-phosphate dehydrogenase is critical for viable pollen development in Arabidopsis. - Plant Physiol. 152:1830-1841, 2010. Go to original source...
  32. Munoz-Bertomeu, J., Cascales-Minana, B., Mulet, J.M., Baroja-Fernandez, E., Pozueta-Romero, J., Kuhn, J.M., Segura, J., Ros, R.: Plastidial glyceraldehyde-3-phosphate dehydrogenase deficiency leads to altered root development and affects the sugar and amino acid balance in Arabidopsis. - Plant Physiol. 151: 541-558, 2009. Go to original source...
  33. Nicholls, C., Li, H., Liu, J.P.: GAPDH: a common enzyme with uncommon functions. - Clin. exp. Pharmacol. Physiol. 39: 674-679, 2012. Go to original source...
  34. Niu, L., Liao, W.: Hydrogen peroxide signaling in plant development and abiotic responses: crosstalk with nitric oxide and calcium. - Front. Plant Sci. 7: 230, 2016. Go to original source...
  35. Noctor, G., Lelarge-Trouverie, C., Mhamdi, A.: The metabolomics of oxidative stress. - Phytochemistry 112: 33-53, 2015. Go to original source...
  36. Peralta, D.A., Araya, A., Busi, M.V., Gomez-Casati, D.F.: The E3 ubiquitin-ligase SEVEN IN ABSENTIA like 7 monoubiquitinates glyceraldehyde-3-phosphate dehydrogenase 1 isoform in vitro and is required for its nuclear localization in Arabidopsis thaliana. - Int. J. Biochem. cell. Biol. 70: 48-56, 2016. Go to original source...
  37. Peralta, D., Bronowska, A.K., Morgan, B., Dóka, É., Van, L.K., Nagy, P., Gräter, F., Dick, T.P.: A proton relay enhances H2O2 sensitivity of GAPDH to facilitate metabolic adaptation. - Nat. chem. Biol. 11:156-163, 2015. Go to original source...
  38. Petersen, J., Brinkmann, H., Cerff, R.: Origin, evolution, and metabolic role of a novel glycolytic GAPDH enzyme recruited by land plant plastids. - J. mol. Evol. 57: 16-26, 2003. Go to original source...
  39. Piattoni, C.V., Guerrero, S.A., Iglesias, A.A..: A differential redox regulation of the pathways metabolizing glyceraldehyde-3-phosphate tunes the production of reducing power in the cytosol of plant cells. - Int. J. mol. Sci. 14: 8073-8092, 2013. Go to original source...
  40. Piszczatowski, R.T., Rafferty, B.J., Rozado, A., Tobak, S., Lents, N.H.: The glyceraldehyde 3-phosphate dehydrogenase gene (GAPDH) is regulated by myeloid zinc finger 1 (MZF-1) and is induced by calcitriol. - Biochem. biophys. Res. Commun. 451: 137-141, 2014. Go to original source...
  41. Plaxton, W.C.: The organization and regulation of plant glycolysis. - Annu. Rev. Plant Biol. 47: 185-214, 1996. Go to original source...
  42. Prasanth, K.R., Huang, Y.W., Liou, M.R., Wang, R.Y., Hu, C.C., Tsai, C.H., Meng, M., Lin, N.S., Hsu, Y.H.: Glyceraldehyde 3-phosphate dehydrogenase negatively regulates the replication of Bamboo mosaic virus and its associated satellite RNA. - J. Virol. 85: 8829-8840, 2011. Go to original source...
  43. Rahantaniaina, M.S., Tuzet, A., Mhamdi, A., Noctor, G.: Missing links in understanding redox signaling via thiol/disulfide modulation: how is glutathione oxidized in plants? - Front. Plant Sci. 4: 477, 2013. Go to original source...
  44. Reczek, C.R., Chandel, N.S.: ROS-dependent signal transduction. - Curr. Opin. Cell Biol. 33: 8-13, 2015. Go to original source...
  45. Rius, S.P., Casati, P., Iglesias, A.A., Gomez-Casati, D.F.: Characterization of an Arabidopsis thaliana mutant lacking a cytosolic non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase. - Plant mol. Biol. 61: 945-957, 2006. Go to original source...
  46. Rius, S.P., Casati, P., Iglesias, A.A., Gomez-Casati, D.F.: Characterization of Arabidopsis lines deficient in GAPC-1, a cytosolic NAD-dependent glyceraldehyde-3-phosphate dehydrogenase. - Plant Physiol. 148: 1655-1667, 2008. Go to original source...
  47. Roos, G., Foloppe, N., Messens, J.: Understanding the pK(a) of redox cysteines: the key role of hydrogen bonding. - Antioxid. Redox Signal. 18: 94-127, 2013. Go to original source...
  48. Schieber, M., Chandel, N.S.: ROS function in redox signaling and oxidative stress. - Curr. Biol. 24: R453-R462, 2014. Go to original source...
  49. Schmidt, R., Schippers, J.H.: ROS-mediated redox signaling during cell differentiation in plants. - Biochim. biophys Acta 1850: 1497-1508, 2015. Go to original source...
  50. Seidler N.W.: GAPDH: Biological Properties and Diversity. - Springer, Dordrecht 2012. Go to original source...
  51. Sengupta, R., Holmgren, A.: Thioredoxin and thioredoxin reductase in relation to reversible S-nitrosylation. - Antioxid. Redox Signal. 18: 259-269, 2013. Go to original source...
  52. Sevilla, F., Camejo, D., Ortiz-Espin, A., Calderon, A., Lazaro, J.J., Jimenez, A.: The thioredoxin/peroxiredoxin/sulfiredoxin system: current overview on its redox function in plants and regulation by reactive oxygen and nitrogen species. - J. exp. Bot. 66: 2945-2955, 2015. Go to original source...
  53. Shao, H.B., Chu, L.Y., Shao, M.A., Jaleel, C.A., Mi, H.M.: Higher plant antioxidants and redox signaling under environmental stresses. - Compt. rend. Biol. 331: 433-441, 2008. Go to original source...
  54. Spadaro, D., Yun, B.W., Spoel, S.H., Chu, C., Wang, Y.Q., Loake, G.J.: The redox switch: dynamic regulation of protein function by cysteine modifications. - Physiol. Plant. 138: 360-371, 2010. Go to original source...
  55. Suzuki, N., Koussevitzky, S., Mittler, R., Miller, G..: ROS and redox signalling in the response of plants to abiotic stress. - Plant Cell Environ. 35: 259-270, 2012. Go to original source...
  56. Tien, Y.C., Chuankhayan, P., Huang, Y.C., Chen, C.D., Alikhajeh, J., Chang, S.L., Chen, C.J..: Crystal structures of rice (Oryza sativa) glyceraldehyde-3-phosphate dehydrogenase complexes with NAD and sulfate suggest involvement of Phe37 in NAD binding for catalysis. - Plant mol. Biol. 80: 389-403, 2012. Go to original source...
  57. Trapet, P., Kulik, A., Lamotte, O., Jeandroz, S., Bourque, S., Nicolas-Frances, V., Rosnoblet, C., Besson-Bard, A., Wendehenne, D.: NO signaling in plant immunity: a tale of messengers. - Phytochemistry 112: 72-79, 2015. Go to original source...
  58. Tristan, C., Shahani, N., Sedlak, T.W., Sawa, A.: The diverse functions of GAPDH: views from different subcellular compartments. - Cell. Signal. 23: 317-323, 2011. Go to original source...
  59. Vescovi, M., Zaffagnini, M., Festa, M., Trost, P., Lo Schiavo, F., Costa, A.: Nuclear accumulation of cytosolic glyceraldehyde-3-phosphate dehydrogenase in cadmiumstressed Arabidopsis roots. - Plant Physiol. 162: 333-346, 2013. Go to original source...
  60. Wang, P., Du, Y., Hou, Y.J., Zhao, Y., Hsu, C.C., Yuan, F., Zhu, X., Tao, W.A., Song, C.P., Zhu, J.K.: Nitric oxide negatively regulates abscisic acid signaling in guard cells by S-nitrosylation of OST1. - Proc. nat. Acad. Sci. USA 112: 613-618, 2015. Go to original source...
  61. Wang, X.Y., Chen, Y.F., Zou, J.J., Wu, W.H.: Involvement of a cytoplasmic glyceraldehyde-3-phosphate dehydrogenase GapC-2 in low-phosphate-induced anthocyanin accumulation in Arabidopsis. - Chin. Sci. Bull. 52: 1764-1770, 2007. Go to original source...
  62. Wang, X., Devaiah, S.P., Zhang, W., Welti, R.: Signaling functions of phosphatidic acid. - Progr. Lipid Res. 45: 250-278, 2006. Go to original source...
  63. Wawer, I., Bucholc, M., Astier, J., Anielska-Mazur, A., Dahan, J., Kulik, A., Wyslouch-Cieszynska, A., Zareba-Koziol, M., Krzywinska, E., Dadlez, M., Dobrowolska, G., Wendehenne, D.: Regulation of Nicotiana tabacum osmotic stress-activated protein kinase and its cellular partner GAPDH by nitric oxide in response to salinity. - Biochem. J. 429: 73-83, 2010. Go to original source...
  64. Winterbourn, C.C., Hampton, M.B.: Thiol chemistry and specificity in redox signaling. - Free Radicals Biol. Med. 45: 549-561, 2008. Go to original source...
  65. Wojtera-Kwiczor, J., Gross, F., Leffers, H.M., Kang, M., Schneider, M., Scheibe, R.: Transfer of a redox-signal through the cytosol by redox-dependent microcompartmentation of glycolytic enzymes at mitochondria and actin cytoskeleton. - Front. Plant Sci. 3: 1-19, 2013. Go to original source...
  66. Yang, T., Wang, L., Li, C., Liu, Y., Zhu, S., Qi, Y., Liu, X., Lin, Q., Luan, S., Yu, F.: Receptor protein kinase FERONIA controls leaf starch accumulation by interacting with glyceraldehyde-3-phosphate dehydrogenase. - Biochem. biophys. Res. Commun. 465: 77-82, 2015. Go to original source...
  67. Yu, M., Yun, B.W., Spoel, S.H., Loake, G.J.: A sleigh ride through the SNO: regulation of plant immune function by protein S-nitrosylation. - Curr. Opin. Plant Biol. 15: 424-430, 2012. Go to original source...
  68. Zachgo, S., Hanke, G.T., Scheibe, R.: Plant cell micro-compartments: a redox-signaling perspective. - Biol. Chem. 394: 203-216, 2013. Go to original source...
  69. Zaffagnini, M., Fermani, S., Calvaresi, M., Orru, R., Iommarini, L., Sparla, F., Falini, G., Bottoni, A., Trost, P.: Tuning cysteine reactivity and sulfenic acid stability by protein microenvironment in glyceraldehyde-3-phosphate dehydrogenases of Arabidopsis thaliana. - Antioxid. Redox Signal. 24: 502-517, 2016. Go to original source...
  70. Zaffagnini, M., Fermani, S., Costa, A., Lemaire, S.D., Trost, P.: Plant cytoplasmic GAPDH: redox post-translational modifications and moonlighting properties. - Front. Plant Sci. 4: 450, 2013a. Go to original source...
  71. Zaffagnini, M., Morisse, S., Bedhomme, M., Marchand, C.H., Festa, M., Rouhier, N., Lemaire, D., Trost, P.: Mechanisms of nitrosylation and denitrosylation of cytoplasmic glyceraldehyde-3-phosphate dehydrogenase from Arabidopsis thaliana. - J. biol. Chem. 288: 22777-22789, 2013b. Go to original source...
  72. Zhang, X.H., Rao, X.L., Shi, H.T., Li, R.J., Lu, Y.T.: Overexpression of a cytosolic glyceraldehyde-3-phosphate dehydrogenase gene OsGAPC3 confers salt tolerance in rice. - Plant Cell Tissue Organ Cult. 107: 1-11, 2011. Go to original source...