Photosynthetica 2018, 56(3):884-892 | DOI: 10.1007/s11099-017-0748-6

Effect of melatonin priming on photosynthetic capacity of tomato leaves under low-temperature stress

X. L. Yang1, H. Xu1, D. Li1, X. Gao1, T. L. Li1, R. Wang1,*
1 Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, College of Horticulture, Shenyang Agriculture University, Shenyang, China

Melatonin has different functions in plant growth and development, especially in the protection of plants suffering from various forms of abiotic stress. We explored the effect of melatonin priming on photosynthetic activity of tomato (Lycopersicon esculentum L.) leaves. Our results showed that 100 µM is the optimal concentration used for alleviation of the damage to photosynthetic apparatus. Melatonin priming both in the form of leaf spray and direct root application was found to reduce the damage to photosynthetic apparatus, and increase the electron transfer rate and quantum yield of PSI and PSII photochemistry, to protect the thylakoid membrane from damage caused by low-temperature stress. Our study provides fundamental information for further research on the molecular mechanism of melatonin function in regulating photosynthesis.

Additional key words: abiotic stress; chemical priming; chlorophyll fluorescence; photoinhibition

Received: December 28, 2016; Accepted: May 10, 2017; Prepublished online: September 1, 2018; Published: August 1, 2018  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Yang, X.L., Xu, H., Li, D., Gao, X., Li, T.L., & Wang, R. (2018). Effect of melatonin priming on photosynthetic capacity of tomato leaves under low-temperature stress. Photosynthetica56(3), 884-892. doi: 10.1007/s11099-017-0748-6
Download citation

References

  1. Ahn T.K., Avenson T.J., Ballottari M. et al.: Architecture of a charge-transfer state regulating light harvesting in a plant antenna protein.-Science 320: 794-797, 2008. Go to original source...
  2. Arnao M.B., Hernández-Ruiz J.: Functions of melatonin in plants: a review.-J. Pineal Res. 59: 133-150, 2015. Go to original source...
  3. Arnao M.B., Hernández-Ruiz J.: Melatonin: plant growth regulator and/or biostimulator during stress?-Trends Plant Sci. 19: 789-797, 2014. Go to original source...
  4. Back K., Tan D.X., Reiter R.J.: Melatonin biosynthesis in plants: multiple pathways catalyze tryptophan to melatonin in the cytoplasm or chloroplasts.-J. Pineal Res. 61:426-437, 2016. Go to original source...
  5. Baránková B., Lazár D., Nau¹ J.: Analysis of the effect of chloroplast arrangement on optical properties of green tobacco leaves.-Remote Sens. Environ. 174: 181-196, 2016. Go to original source...
  6. Beilby M.J., Turi C.E., Baker T.C. et al.: Circadian changes in endogenous concentrations of indole-3-acetic acid, melatonin, serotonin, abscisic acid and jasmonic acid in Characeae (Chara australis Brown).-Plant Signal Behav. 10: e1082697, 2015. Go to original source...
  7. Borges A.A., Jiménez-Arias D., Expósito-Rodríguez M. et al.: Priming crops against biotic and abiotic stresses: MSB as a tool for studying mechanisms.-Front. Plant Sci. 5: 642, 2014. Go to original source...
  8. Derks A., Schaven K., Bruce D.: Diverse mechanisms for photoprotection in photosynthesis. Dynamic regulation of photosystem II excitation in response to rapid environmental change.-BBA-Bioenergetics 1847: 468-485, 2015. Go to original source...
  9. Fan D.Y., Ye Z.P., Wang S.C. et al.: Multiple roles of oxygen in the photoinactivation and dynamic repair of Photosystem II in spinach leaves.-Photosynth. Res. 127: 307-319, 2016. Go to original source...
  10. Fan J., Hu Z., Xie Y. et al.: Alleviation of cold damage to photosystem II and metabolisms by melatonin in Bermudagrass.-Front. Plant Sci. 6: 925, 2015. Go to original source...
  11. Gururani M.A., Venkatesh J., Tran L.S.P.: Regulation of photosynthesis during abiotic stress-induced photoinhibition.-Mol Plant. 8: 1304-1320, 2015. Go to original source...
  12. Hao J., Gu F., Zhu J. et al.: Low night temperature affects the phloem ultrastructure of lateral branches and raffinose family oligosaccharide (RFO) accumulation in RFO-transporting plant melon (Cucumismelo L.) during fruit expansion.-Plos One 11: e0160909, 2016. Go to original source...
  13. Hu Z.R., Fan J.B., Xie Y. et al.: Comparative photosynthetic and metabolic analyses reveal mechanism of improved cold stress tolerance in bermudagrass by exogenous melatonin.-Plant Physiol. Bioch. 100: 94-104, 2016. Go to original source...
  14. Johnson G.N., Lawson T., Murchie E.H. et al.: Photosynthesis in variable environments.-J. Exp. Bot. 66: 2371-2372, 2015. Go to original source...
  15. Lazár D., Murch S.J., Beilby M.J. et al.: Exogenous melatonin affects photosynthesis in characeae Chara australis.-Plant Signal. Behav. 8: e23279, 2013. Go to original source...
  16. Lazár D.: Parameters of photosynthetic energy partitioning.-J. Plant Physiol. 175: 131-147, 2015. Go to original source...
  17. Lei Y., Zheng Y., Dai K. et al.: Different responses of photosystem I and photosystem II in three tropical oilseed crops exposed to chilling stress and subsequent recovery.-Trees 28: 923-933, 2014. Go to original source...
  18. Li X., Tan D.X., Jiang D. et al.: Melatonin enhances cold tolerance in drought-primed wild-type and abscisic aciddeficient mutant barley.-J. Pineal Res. 61: 328-339, 2016. Go to original source...
  19. Liu J., Wang W., Wang L. et al.: Exogenous melatonin improves seedling health index and drought tolerance in tomato.-Plant Growth Regul. 77: 317-326, 2015a. Go to original source...
  20. Liu N., Jin Z.Y., Wang S.S. et al.: Sodic alkaline stress mitigation with exogenous melatonin involves reactive oxygen metabolism and ion homeostasis in tomato.-Sci. Hortic.-Amsterdam 181: 18-25, 2015b. Go to original source...
  21. Liu Y.F., Zhang G.X., Qi M.F. et al.: Effects of calcium on photosynthesis, antioxidant system, and chloroplast ultrastructure in tomato leaves under low night temperature stress.-J. Plant Growth Regul. 34: 263-273, 2015c. Go to original source...
  22. Lu T., Meng Z., Zhang G. et al.: Sub-high temperature and high light intensity induced irreversible inhibition on photosynthesis system of tomato plant (Solanum lycopersicum L.).-Front. Plant Sci. 8: 365, 2017. Go to original source...
  23. Lyu H., Lazár D.: Modeling the light-induced electric potential difference (Delta;&Psi), the pH difference (Delta;pH) and the proton motive force across the thylakoid membrane in C3 leaves.-J. Theor Biol. 413: 11-23, 2017. Go to original source...
  24. Nawaz M.A., Huang Y., Bie Z. et al.: Melatonin: current status and future perspectives in plant science.-Front. Plant Sci. 6: 1230, 2015. Go to original source...
  25. Nishiyama Y., Allakhverdiev S.I., Murata N.: Protein synthesis is the primary target of reactive oxygen species in the photoinhibition of photosystem II.-Physiol. Plantarum 142: 35-46, 2011. Go to original source...
  26. Reiter R.J., Tan D.X., Zhou Z.: Phytomelatonin: assisting plants to survive and thrive.-Molecules 20: 7396-7437, 2015. Go to original source...
  27. Roach T., Krieger-Liszkay A.: Regulation of photosynthetic electron transport and photoinhibition.-Curr Protein Pept. Sc. 15: 351-362, 2014. Go to original source...
  28. Savvides A., Ali S., Tester M., Fotopoulos V.: Chemical priming of plants against multiple abiotic stresses: Mission Possible?-Trends Plant Sci. 21: 329-340, 2016. Go to original source...
  29. Schreiber U., Klughammer C.: New accessory for the Dual-PAM-100: The P515/535 module and examples of its application.-PAM Appl. Notes 1: 1-10, 2008a.
  30. Schreiber U., Klughammer C.: Saturation pulse method for assessment of energy conversion in PSI.-PAM Appl. Notes 1: 11-14, 2008b.
  31. Sejima T., Takagi D., Fukayama H. et al.: Repetitive short-pulse light mainly inactivates photosystem I in sunflower leaves.-Plant Cell Physiol. 55: 1184-1193, 2014. Go to original source...
  32. Suorsa M.: Cyclic electron flow provides acclimatory plasticity for the photosynthetic machinery under various environmental conditions and developmental stages.-Front. Plant Sci. 6: 800, 2015. Go to original source...
  33. Suzuki K., Ohmori Y., Ratel E.: High root temperature blocks both linear and cyclic electron transport in the dark during chilling of the leaves of rice seedlings.-Plant Cell Physiol. 52: 1697-1707, 2011. Go to original source...
  34. Takahashi S., Milward S.E., Fan D.Y. et al.: How does cyclic electron flow alleviate photoinhibition in Arabidopsis?-Plant Physiol. 149: 1560-1567, 2009. Go to original source...
  35. Wang P., Sun X., Li C. et al.: Long-term exogenous application of melatonin delays drought-induced leaf senescence in apple.-J. Pineal Res. 54: 292-302, 2013. Go to original source...
  36. Yang S.L., Lan S.S., Deng F.F. et al.: Effects of calcium and calmodulin antagonists on chilling stress-induced proline accumulation in Jatropha curcas L.-J. Plant Growth Regul. 35: 815-826, 2016. Go to original source...
  37. Zhang G., Liu Y., Ni Y. et al.: Exogenous calcium alleviates low night temperature stress on the photosynthetic apparatus of tomato leaves.-PLoS One 9: e97322, 2014a. Go to original source...
  38. Zhang J., Jiang X.D., Li T.L. et al.: Photosynthesis and ultrastructure of photosynthetic apparatus in tomato leaves under elevated temperature.-Photosynthetica 52: 430-436, 2014b. Go to original source...
  39. Zhang X., da Silva J.A.T., Niu M. et al.: Physiological and transcriptomic analyses reveal a response mechanism to cold stress in Santalum album L. leaves.-Sci Rep. 7: 42165, 2017. Go to original source...
  40. Zhao H., Ye L., Wang Y. et al.: Melatonin increases the chilling tolerance of chloroplast in cucumber seedlings by regulating photosynthetic electron flux and the ascorbate-glutathione cycle.-Front. Plant Sci. 7: 1814, 2016. Go to original source...
  41. Zhou X., Zhao H., Cao K. et al.: Beneficial roles of melatonin on redox regulation of photosynthetic electron transport and synthesis of D1 protein in tomato seedlings under salt stress.-Front. Plant Sci. 7: 1823, 2016. Go to original source...
  42. Zhu J.K.: Abiotic stress signaling and responses in plants.-Cell 167: 313-324, 2016. Go to original source...
  43. Ziogas V., Tanou G., Belghazi M. et al.: Roles of sodium hydrosulfide and sodium nitroprusside as priming molecules during drought acclimation in citrus plants.-Plant Mol. Biol. 89: 433-450, 2015. Go to original source...