biologia plantarum

International journal on Plant Life established by Bohumil Němec in 1959

Biologia plantarum 51:571-574, 2007 | DOI: 10.1007/s10535-007-0125-6

Silicon increases boron tolerance and reduces oxidative damage of wheat grown in soil with excess boron

A. Gunes1,*, A. Inal1, E. G. Bagci1, S. Coban1, O. Sahin1
1 Faculty of Agriculture, Department of Soil Science and Plant Nutrition, Ankara University, Ankara, Turkey

The effect of silicon on the growth, boron concentrations, malondialdehyde (MDA) content, lipoxygenase (LOX) activity, proline (PRO) and H2O2 accumulation, and the activities of major antioxidant enzymes [superoxide dismutase (SOD), catalase (CAT), and ascorbate peroxidase (APX)] and non-enzymatic antioxidants (AA) of wheat grown in soil originally with toxic B concentrations were investigated. Applied of 5.0 and 10.0 mM Si to the B toxic soil significantly increased Si concentration of the wheat and counteracted the deleterious effects of B on shoot growth. The contents of PRO, H2O2, MDA, and LOX activity of wheat grown in B toxic soil were significantly reduced by Si treatments. Compared with control plants, the activities of SOD, CAT, APX and content of AA were decreased by applied Si. Based on the present work, it can be concluded that Si alleviates B toxicity of wheat by preventing oxidative membrane damage and also translocation of B from root to shoot and/or soil to plant.

Keywords: antioxidant enzymes; B toxicity; lipid peroxidation; lipoxygenase; proline; Triticum aestivum
Subjects: antioxidants, antioxidant enzymes; ascorbate peroxidase; boron; catalase; lipid peroxidation; lipoxygenase; malondialdehyde; proline; reactive oxygen species (ROS); salinity, salt stress; silicon; Triticum aestivum; wheat

Received: May 26, 2006; Accepted: October 2, 2006; Published: September 1, 2007  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Gunes, A., Inal, A., Bagci, E.G., Coban, S., & Sahin, O. (2007). Silicon increases boron tolerance and reduces oxidative damage of wheat grown in soil with excess boron. Biologia plantarum51(3), 571-574. doi: 10.1007/s10535-007-0125-6
Download citation

References

  1. Ahmad, R., Zaheer, S., Ismail, S.: Role of silicon in salt tolerance of wheat (Triticum aestivum L.).-Plant Sci. 85: 43-50, 1992. Go to original source...
  2. Al-Aghabary, K., Zhu, Z., Shi, Q.: Influence of silicon supply on chlorophyll content, chlorophyll fluorescence, and antioxidative enzyme activities in tomato plants under salt stress.-J. Plant Nutr. 12: 2101-2115, 2004. Go to original source...
  3. Alpaslan, M., Gunes, A.: Interactive effects of boron and salinity stress on the growth, membrane permeability and mineral composition of tomato and cucumber plants.-Plant Soil 236: 123-128, 2001. Go to original source...
  4. Axelrod, B., Cheesbrough, T.M., Laakso, S.: Lipoxygenases from soybeans.-In: Lowenstein, J.M. (ed.): Methods in Enzymology. Pp. 441-451. Academic Press, New York 1981. Go to original source...
  5. Bates L.S., Waldren, R.P., Teare, J.D.: Rapid determination of proline for water stress studies.-Plant Soil 39: 205-207, 1973. Go to original source...
  6. Bremont, J.F.J., Flora, A.B., Lucero, E.H., Kessler, M.R., Gallegos, J.A.A., Pimental, J.G.R.: Proline accumulation in two bean cultivars under salt stress and effect of polyamines and ornithine.-Biol. Plant. 50: 763-766, 2006. Go to original source...
  7. Cakmak, I., Strbac, D., Marschner, H.: Activities of hydrogen peroxide-scavenging enzymes in germinated wheat seeds.-J. exp. Bot. 44: 127-132, 1993. Go to original source...
  8. Epstein, E.: Silicon.-Annu. Rev. Plant Physiol. Plant mol. Biol. 50: 641-664, 1999. Go to original source...
  9. Gong, H., Zhu, X., Chen, K., Wang, S., Zhang, C.: Silicon alleviates oxidative damage of wheat plants in pots under drought.-Plant Sci. 169: 313-321, 2005. Go to original source...
  10. Hodges, D.M, DeLong J.M, Forney, C.F, Prange, R.K.: Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds.-Planta 207: 604-611, 1999. Go to original source...
  11. Inal, A., Tarakcioglu, C.: Effects of nitrogen forms on growth, nitrate accumulation, membrane permeability and nitrogen use efficiency of hydroponically grown bunch onion under boron deficiency and toxicity.-J. Plant Nutr. 24: 1521-1534, 2001. Go to original source...
  12. Ismail, A.M.: Response of maize and sorghum to excess boron and salinity.-Biol. Plant. 47: 313-316, 2003. Go to original source...
  13. Karabal, E., Yucel, M, Oktem, H.A.: Antioxidant responses of tolerant and sensitive barley cultivars to boron toxicity.-Plant Sci. 164: 925-933, 2003. Go to original source...
  14. Liang, Y.: Effects of silicon on enzyme activity and sodium, potassium and calcium concentration in barley under salt stress.-Plant Soil 209: 217-224, 1999. Go to original source...
  15. Liang, Y., Chen, Q., Liu, Q., Zhang, W., Ding R.: Exogenous silicon (Si) increases antioxidant enzyme activity and reduces lipid peroxidation in roots of salt-stressed barley (Hordeum vulgare L.).-J. Plant Physiol. 160: 1157-1164, 2003. Go to original source...
  16. Ma, J.F.: Role of silicon enhancing the resistance of plants to biotic and abiotic stresses.-Soil Sci. Plant Nutr. 50: 11-18, 2004. Go to original source...
  17. Mittler, R.: Oxidative stress, antioxidants and stress tolerance.-Trends Plant Sci. 7: 405-410, 2002. Go to original source...
  18. Molassiotis, A., Sotiropoulos, T., Tanou, G., Diamantidis, G., Therios, I.: Boron-induced oxidative damage and antioxidant and nucleolytic responses in shoot tips culture of the apple rootstock EM9 (Malus domestica Borkh).-Environ. Exp. Bot. 56: 54-62, 2006a. Go to original source...
  19. Molassiotis, A., Sotiropoulos, T., Tanou, G., Kofidis, G., Diamantidis, G., Therios, I.: Antioxidant and anatomical responses in shoot culture of apple rootstock MM 106 treated with NaCl, KCl, mannitol or sorbitol.-Biol. Plant. 50: 61-68, 2006b. Go to original source...
  20. Mukherjee, S.P., Choudhuri, M.A.: Implications of water stressinduced changes in the levels of endogenous ascorbic acid and hydrogen peroxide in Vigna seedlings.-Physiol. Plant. 58: 166-170, 1983. Go to original source...
  21. Nakano, Y., Asada, K.: Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts.-Plant Cell Physiol. 22: 867-880, 1981.
  22. Papadakis, I.E., Dimassi, K.N., Bosabadilis, A.M., Therios, I.N., Pataks, A., Giannakoulas, A.: Boron toxicity in 'Clementine' mandarin plants grafted on two rootstocks.-Plant Sci. 166: 539-547, 2004. Go to original source...
  23. Prieto, P., Pineda, M., Aguilar, M.: Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: specific application to the determination of vitamin E.-Anal. Biochem. 269: 337-341, 1999. Go to original source...
  24. Ranganathan, S., Suvarchala, V., Rajesh, Y.B.R.D., Prasad, M.S., Padmakumari, A.P., Voleti, S.R.: Effects of silicon sources on its deposition, chlorophyll content, and disease and pest resistance in rice.-Biol. Plant. 50: 713-716, 2006. Go to original source...
  25. Richmond, K.E., Sussman, M.: Got silicon? The non-essential beneficial plant nutrient.-Curr. Opin. Plant Biol. 6: 268-272, 2003. Go to original source...
  26. Romero-Aranda, M.R, Jurado, O., Cuartero, J.: Silicon alleviates the deleterious salt effect on tomato plant growth by improving plant water status.-J. Plant Physiol. 163: 847-855, 2006. Go to original source...
  27. Sairam, R.K, Srivastava, S., Agarwal, S., Meena, R.C.: Differences in antioxidant activity in response to salinity stress in tolerant and susceptible wheat genotypes.-Biol. Plant. 49: 85-91, 2005. Go to original source...
  28. Van der Vorm, P.D.J.: Dry ashing of plant material and dissolution of the ash in HF for the colorimetric determination of silicon.-Commun. Soil Sci. Plant Anal. 18: 1181-1189, 1987. Go to original source...
  29. Wolf, B. The determination of boron in soil extracts, plant materials, composts, manures, water and nutrient solutions.-Commun. Soil Sci. Plant Anal. 2: 363-374, 1971. Go to original source...
  30. Xiong, L., Zhu, J.K.: Molecular and genetic aspects of plant response to osmotic stress.-Plant Cell Environ. 25: 131-139, 2002. Go to original source...
  31. Yeo, A.R., Flowers, S.A., Rao, G., Welfare, K., Senanayake, N., Flowers, T.J.: Silicon reduces sodium uptake in rice (Oryza sativa L.) in saline conditions and this is accounted for a reduction in the transpirational bypass flow.-Plant Cell Environ. 22: 559-565, 1999. Go to original source...
  32. Zhu, Z., Wei, G., Li, J., Qian, Q., Yu, J.: Silicon alleviates salt stress and increases antioxidant enzymes activity in leaves of salt-stressed cucumber (Cucumis sativus L.).-Plant Sci. 167: 527-533, 2004. Go to original source...