biologia plantarum

International journal on Plant Life established by Bohumil Němec in 1959

Biologia plantarum 59:773-782, 2015 | DOI: 10.1007/s10535-015-0555-5

The Jatropha curcas KASIII gene alters fatty acid composition of seeds in Arabidopsis thaliana

N. Yu1,2,3, W. F. Xiao2,3,4, J. Zhu2,3, X. Y. Chen1,2,3,*, C. C. Peng1,2,3,*
1 State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, P.R. China
2 Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou, P.R. China
3 College of Forestry, South China Agricultural University, Guangzhou, P.R. China
4 Institute of Environmental Horticulture of Guangdong Academy of Agricultural Science, Guangzhou, P.R. China

Jatropha curcas L. is a perennial, drought-resistant, and non-food oilseed crop. The fatty acid composition of seed oil, especially the ratio of 16- to 18-carbon fatty acids, has a direct impact on the biodiesel quality. In plants, fatty acid chain lengths are mainly determined by the plastidial fatty acid synthase complex which includes three β-ketoacyl-acyl carrier protein synthases (KASs), KASI, KASII, and KASIII. The KASIII is thought to play a rate-limiting role in fatty acid synthesis. Here, we report the functional characterization of a putative JcKASIII gene from Jatropha curcas using Arabidopsis thaliana L. as model system. The transcripts of JcKASIII were detected in all tissues examined and increased in seeds. Overexpression of JcKASIII in Arabidopsis led to an increased content of palmitic acid and a higher ratio of 16- to 18-carbon fatty acids. Moreover, functional analysis of JcAKSIII in kasI or kasII knock down Arabidopsis mutants revealed that the composition of seed oil changed. Taken together, these results suggest that heterologous JcKASIII could function as one of the major regulators of fatty acid composition.

Keywords: fatty acid synthase; mutants; transgenic plants
Subjects: transgenic plants; gene expression; fatty acids; mutants; sucrose

Received: October 7, 2014; Revised: April 30, 2015; Accepted: May 25, 2015; Published: December 1, 2015  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Yu, N., Xiao, W.F., Zhu, J., Chen, X.Y., & Peng, C.C. (2015). The Jatropha curcas KASIII gene alters fatty acid composition of seeds in Arabidopsis thaliana. Biologia plantarum59(4), 773-782. doi: 10.1007/s10535-015-0555-5
Download citation

Supplementary files

Download filebpl-201504-0021_S1.pdf

File size: 338.18 kB

References

  1. Abbadi, A., Brummel, M., Spener, F.: Knockout of the regulatory site of 3-ketoacyl-ACP synthase III enhances short- and medium-chain acyl-ACP synthesis. - Plant J. 24: 1-9, 2000. Go to original source...
  2. Bamgboye, A., Hansen, A.: Prediction of cetane number of biodiesel fuel from the fatty acid methyl ester (FAME) composition. - Int. Agrophysics 22: 21-29, 2008.
  3. Barrero, J.M., González-Bayón, R., Del Pozo, J.C., Ponce, M.R., Micol, J.L.: INCURVATA2 encodes the catalytic subunit of DNA polymerase alpha and interacts with genes involved in chromatin-mediated cellular memory in Arabidopsis thaliana. - Plant Cell 19: 2822-38, 2007. Go to original source...
  4. Becker, K., Makkar, H.P.S.: Jatropha curcas: a potential source for tomorrow's oil and biodiesel. - Lipid Technol. 20: 104-108, 2008. Go to original source...
  5. Berchmans, H.J., Hirata, S.: Biodiesel production from crude Jatropha curcas L. seed oil with a high content of free fatty acids. - Bioresource Technol. 99: 1716-1721, 2008. Go to original source...
  6. Biswas, B., Kazakoff, S.H., Jiang, Q.Y., Samuel, S., Gresshoff, P.M., Scoff, P.T.: Genetic and genomic analysis of the tree legume Pongamia pinnata as a feedstock for biofuels. - Plant Genome 6: doi:10.3835/plantgenome2013.05.0015, 2013. Go to original source...
  7. Chen, J., Post-Beittenmiller, D.: Molecular cloning of a cDNA encoding 3-ketoacyl-acyl carrier protein synthase III from leek. - Gene 182: 45-52, 1996. Go to original source...
  8. Clough, R.G., Matthis, A.L., Barnum, S.R., Jaworski, J.G.: Purification and characterization of 3-ketoacyl-acyl carrier protein synthase-III from spinach: a condensing enzyme utilizing acetyl-coenzyme-A to initiate fatty acid synthesis. - J. biol. Chem. 267: 20992-20998, 1992. Go to original source...
  9. Clough, S.J., Bent, A.F.: Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. - Plant J. 16: 735-743, 1998. Go to original source...
  10. Datta, M.M., Mukherjee, P., Ghosh, B., Jha, T.B.: In vitro clonal propagation of biodiesel plant (Jatropha curcas L.). - Curr. Sci. 93: 1438-1442, 2007.
  11. Dehesh, K., Tai, H., Edwards, P., Byrne, J., Jaworski, J.G.: Overexpression of 3-ketoacyl-acyl-carrier protein synthase III in plants reduces the rate of lipid synthesis. - Plant Physiol. 125: 1103-1114, 2001. Go to original source...
  12. Durrett, T.P., Benning, C., Ohlrogge, J.: Plant triacylglycerols as feedstocks for the production of biofuels. - Plant J. 54: 593-607, 2008. Go to original source...
  13. Fan, R.C., Peng, C.C., Xu, Y.H., Wang, X.F., Li, Y.: Apple sucrose transporter SUT1 and sorbitol transporter SOT6 interact with cytochrome b5 to regulate their affinity for substrate sugars. - Plant Physiol. 150: 1880-1901, 2009. Go to original source...
  14. González-Mellado, D., Wettstein-Knowles, P., Garcés, R., Martínez-Force, E.; The role of β-ketoacyl-acyl carrier protein synthase III in the condensation steps of fatty acid biosynthesis in sunflower. - Planta 231: 1277-1289, 2010. Go to original source...
  15. Gubitz, G.M., Mittelbach, M., Trabi, M.: Exploitation of the tropical oil seed plant Jatropha curcas L. - Bioresource Technol. 67: 73-82, 1999. Go to original source...
  16. Jaworski, J.G., Clough, R.C., Barnum, S.R.: A ceruleninin sensitive short chain 3-ketoacyl-acyl carrier protein synthase in Spinacia oleracea leaves. - Plant Physiol. 90: 41-44, 1989. Go to original source...
  17. Jones, A.L., Gane, A.M., Herbert, D., Willey, D., Rutter, A.J., Kille, P., Dancer, J.E., Harwood, J.L.: β-Ketoacyl-acyl carrier protein synthase III from pea (Pisum sativum L.): properties, inhibition by a novel thiolactomycin analogue and isolation of a cDNA clone encoding the enzyme. - Planta 216: 752-761, 2003. Go to original source...
  18. Kim, M.J., Yang, S.W., Mao, H.Z., Veena, S.P., Yin, J.L., Chua, N.H.: Gene silencing of Sugar-dependent 1 (JcSDP1), encoding a patatin-domain triacylglycerol lipase, enhances seed oil accumulation in Jatropha curcas. - Biotechnol. Biofuels 7: 36, 2014. Go to original source...
  19. Kumar, N., Anand, K.G.V., Pamidimarri, S., Sarkar, T., Reddy, M.P., Radhakrishnan, T., Kaul, T., Reddy, M.K., Sopori, S.K.: Stable genetic transformation of Jatropha curcas via Agrobacterium tumefaciens-mediated gene transfer using leaf explants. - Ind. Crop Prod. 32: 41-47, 2010. Go to original source...
  20. Lai, C.Y., Cronan, J.E.: β-ketoacyl-acyl carrier protein synthase III (FabH) is essential for bacterial fatty acid synthesis. - J. biol. Chem. 278: 51494-51503, 2003. Go to original source...
  21. Li, J., Li, M.R., Wu, P.Z., Tian, C.E., Jiang, H.W., Wu, G.J.: Molecular cloning and expression analysis of a gene encoding a putative β-ketoacyl-acyl carrier protein (ACP) synthase III (KAS III) from Jatropha curcas. - Tree Physiol. 28: 921-927, 2008a. Go to original source...
  22. Li, M., Li, H., Jiang, H., Pan, X., Wu, G.: Establishment of an Agrobacterium-mediated cotyledon disc transformation method for Jatropha curcas. - Plant Cell Tissue Organ Cult. 92: 173-781, 2008b. Go to original source...
  23. Li-Beisson, Y.H., Shorrosh, B., Beisson, F., Andersson, M.X., Arondel, V., Bates, P.D., Baud, S., Bird, D., Debono, A., Durrett, T.P.: Acyl-lipid Metabolism. - In: Somerville, C.R., Meyerowitz, E.M (ed.): The Arabidopsis Book. Pp. 1-4. American Society of Plant Biologists, Rockville 2010. Go to original source...
  24. Lu, W., Wei, Q., Tang, L., Yan, F., Chen, F.: Induction of callus from Jatropha curcas and rapid propagation. - Chin. J. appl. environ. Biol. 9: 127-130, 2003.
  25. Luo, T., Peng, S.M., Deng, W.Y., Man, D.W., Xu, Y., Xiao, M., Chen, F.: Characterization of a new stearoyl-acyl carrier protein desaturase gene from Jatropha curcas. - Biotechnol. Lett. 28: 657-662, 2006. Go to original source...
  26. Maghuly, F., Laimer, M.: Jatropha curcas, a biofuel crop: functional genomics for understanding metabolic pathways and genetic improvement. - Biotechnol. J. 8: 1172-1182, 2013. Go to original source...
  27. Nishida, I.: Plastid metabolic pathways for fatty acid metabolism. - In: Daniell, H., Chase, C. (ed.): Mol. Biol. Biotechnol. Plant Organelles. Pp. 543-564. Springer, Dordrecht 2004. Go to original source...
  28. Pan, J.L., Fu, Q.T., Xu, Z.F.: Agrobacterium tumefaciensmediated transformation of biofuel plant Jatropha curcas using kanamycin selection. - Afr. J. Biotechnol. 9: 6477-6481, 2010.
  29. Qiu, Z.B., Wang, Y.F., Zhu, A.J., Peng, F.L., Wang, L.S.: Exogenous sucrose can enhance tolerance of Arabidopsis thaliana seedlings to salt stress. - Biol. Plant. 58: 611-617, 2014. Go to original source...
  30. Qu, J., Mao, H.Z., Chen, W., Gao, S.Q., Bai, Y.N., Sun, Y.W., Geng, Y.F., Ye, J.: Development of marker-free transgenic Jatropha plants with increased levels of seed oleic acid. - Biotechnol. Biofuels. 5: 10, 2012. Go to original source...
  31. Shimakata, T., Stumpf, P.K.: Isolation and function of spinach leaf β-ketoacyl-[acyl-carrier-protein] synthases. - Proc. nat. Acad. Sci. USA 79: 5808-5812, 1982. Go to original source...
  32. Shrivastava, S., Banerjee, M.: In vitro clonal propagation of physic nut (Jatropha curcas L): influence of additives. - Int. J. Integr. Biol. 3: 73-77, 2008.
  33. Slabaugh, M.B., Tai, H., Jaworski, J.G., Knapp, S.J.: cDNA clones encoding β-ketoacyl-acyl carrier protein synthase III from Cuphea wrightii. - Plant Physiol. 108: 443-444, 1995. Go to original source...
  34. Stoll, C., Luhs, W., Zarhloul, M.K., Brummel, M., Spener, F., Friedt, W.: Knockout of KASIII regulation changes fatty acid composition in canola (Brassica napus). - Eur. J. Lipid Sci. Technol. 108: 277-286, 2006. Go to original source...
  35. Tai, H., Post-Beittenmiller, D., Jaworski, J.G.: Cloning of a cDNA encoding 3-ketoacyl-acyl carrier protein synthase III from Arabidopsis. - Plant Physiol. 106: 801-802, 1994. Go to original source...
  36. Tai, H.Y., Jaworski, J.G.: 3-Ketoacyl-acyl carrier protein synthase-III from spinach (Spinacia oleracea) is not similar to other condensing enzymes of fatty acid synthase. - Plant Physiol. 103: 1361-1367, 1993. Go to original source...
  37. Takami, T., Shibata, M., Kobayashi, Y., Shikanai, T.: De novo biosynthesis of fatty acids plays critical roles in the response of the photosynthetic machinery to low temperature in Arabidopsis. - Plant Cell Physiol. 51: 1265-1275, 2010. Go to original source...
  38. Thepsamran, N., Thepsithar, C., Thongpukdee, A.: In vitro induction of shoots and roots from Jatropha curcas L. explants. - J. Hort. Sci. Biotech. 83: 106-112, 2008. Go to original source...
  39. Verwoert. I., Linden, V.K.H., Walsh, M.C., Nijkamp, H.J., Stuitje, A.R.: Modification of Brassica napus seed oil by expression of the Escherichia coli fabH gene, encoding 3-ketoacyl-acyl carrier protein synthase III. - Plant mol. Biol. 27: 875-886, 1995. Go to original source...
  40. Wei, Q., Li, J., Zhang, L., Wu, P., Chen, Y., Li, M., Jiang, H., Wu, G.: Cloning and characterization of a β-ketoacyl-acyl carrier protein synthase II from Jatropha curcas. - J. Plant Physiol. 169: 816-824, 2012. Go to original source...
  41. Wu, P.Z., Li, J., Wei, Q., Zeng, L., Chen, Y.P., Li, M.R., Jiang, H.W., Wu, G.J.: Cloning and functional characterization of an acyl-acyl carrier protein thioesterase (JcFATB1) from Jatropha curcas. - Tree Physiol. 29: 1299-1305, 2009. Go to original source...
  42. Ye, J., Geng, Y.F., Zhang, B.P., Mao, H.Z., Qu, J., Chua, N.H.: The Jatropha FT ortholog is a systemic signal regulating growth and flowering time. - Biotechnol. Biofuels 7: 91, 2014a. Go to original source...
  43. Ye, J., Hong, Y., Qu, J., Wang, C.: Improvement of Jatropha oil by Genetic Transformation. - Springer, New York 2012. Go to original source...
  44. Ye, J., Qu, J., Bui, H.T.N., Chua, N.H.: Rapid analysis of Jatropha curcas gene functions by virus-induced gene silencing. - Plant Biotechnol. J. 7: 964-976, 2009. Go to original source...
  45. Ye, J., Qu, J., Mao, H.Z., Ma, Z.G., Rahman, N.E.B., Bai, C., Chen, W., Jiang, S.Y., Ramachandran, S., Chua, N.H.: Engineering geminivirus resistance in Jatropha curcus. - Biotechnol. Biofuels. 7: 149, 2014b. Go to original source...
  46. Zhang, X.R., Henriques, R., Lin, S.S., Niu, Q.W., Chua, N.H.: Agrobacterium-mediated transformation of Arabidopsis thaliana using the floral dip method. - Nat. Protools 1: 1-6, 2006. Go to original source...
  47. Zong, H., Wang, S., Ouyang, C., Deng, X.L., Li, L., Li, J.Q., Chen, F.: Agrobacterium-mediated transformation of Jatropha curcas young leaf explants with lateral shootinducing factor (LIF). - Int. J. Agr. Biol. 12: 891-896, 2010.