Photosynthetica 2012, 50(3):343-352 | DOI: 10.1007/s11099-012-0038-2

Evaluation of reflectance spectroscopy indices for estimation of chlorophyll content in leaves of a tropical tree species

M. S. Mielke1,*, B. Schaffer2, A. C. Schilling3
1 Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Ilhéus, BA, Brazil
2 University of Florida, IFAS, Tropical Research & Education Center, Homestead, USA
3 Departamento de Ciências Exatas e Tecnológicas, Universidade Estadual de Santa Cruz, Ilhéus, Brasil

The effectiveness of eight spectral reflectance indices for estimating chlorophyll (Chl) content in leaves of Eugenia uniflora L., a tropical tree species widely distributed throughout the world and a key species for ecosystem restoration projects, was evaluated. Spectral reflectance indices were tested using sun and shade leaves with a broad variation in leaf mass per area (LMA). Shortly after plants were exposed to chilling temperatures, there was a dramatic visible change in some sun leaves from green to red. Prior to testing Chl-related reflectance indices, the green and red leaves were separated according to the anthocyanin reflectance index (ARI). Slightly green to dark green leaves corresponded to an ARI value less than 0.11 (n = 107), whereas slightly red to red leaves corresponded to an ARI value greater than 0.11 (n = 35). To estimate leaf Chl, two simple reflectance indices (SR680 and SR705), two normalized difference indices (ND680 and ND705), two modified reflectance indices (mSR705 and mND705), a modified Chl absorption ratio index (mCARI705) and an index insensitive to the presence of anthocyanins (CIre) were evaluated. Good estimates of leaf Chl content were obtained using the reflectance indices tested regardless of the presence of anthocyanins and changes in LMA. Based on the coefficients of determination (r 2) and the root mean square errors (RMSɛc) the best results were obtained with reflectance indices measured at wavelengths of 750 and 705 nm. Considering the performance of the models the best reflectance indices to estimate Chl contents in E. uniflora leaves with a broad variation in LMA and anthocyanin contents was SR705 and mCARI705.

Additional key words: anthocyanins; ecosystem restoration; Eugenia uniflora; leaf mass per area; SPAD-502

Received: July 14, 2011; Accepted: March 29, 2012; Published: September 1, 2012  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Mielke, M.S., Schaffer, B., & Schilling, A.C. (2012). Evaluation of reflectance spectroscopy indices for estimation of chlorophyll content in leaves of a tropical tree species. Photosynthetica50(3), 343-352. doi: 10.1007/s11099-012-0038-2
Download citation

References

  1. Adams, M.L., Philpot, W.D., Norvell, W.A.: Yellowness index: an application of spectral second derivatives to estimate chlorosis of leaves in stressed vegetation. - Int. J. Remote Sens. 20: 3663-3675, 1999. Go to original source...
  2. Alves, E.S., Tresmondi, F., Longui, E.L.: [(Leaf anatomy of Eugenia uniflora L. (Myrtaceae) in urban and rural environments, São Paulo State, Brazil]. - Acta Bot. Bras. 22: 241-248, 2008. [In Port.] Go to original source...
  3. Billings, W.D., Morris, R.J.: Reflection of visible and infrared radiation from leaves of different ecological groups. - Amer. J. Bot. 38: 327-331, 1951. Go to original source...
  4. Blackburn, G.A.: Hyperspectral remote sensing of plant pigments. - J. Exp. Bot. 58: 855-867, 2007. Go to original source...
  5. Box, G.E.P., Cox, D.R.: An analysis of transformations. - J. Roy. Stat. Soc. 26: 211-252, 1964. Go to original source...
  6. Campbell, R.J., Mobley, K.N., Marini, R.P., Pfeiffer, D.G.: Growing conditions alter the relationship between SPAD-502 values and apple leaf chlorophyll. - Hortsci. 25: 330-331, 1990. Go to original source...
  7. Carter, G.A., Spiering, B.A.: Optical properties of intact leaves for estimating chlorophyll concentration. J. Environ. Qual. - 31: 1424-1432, 2002. Go to original source...
  8. Castro-DÍez, P., Puyravaud, J.P., Cornelissen, J.H.C.: Leaf structure and anatomy as related to leaf mass per area variation in seedlings of a wide range of woody plant species and types. - Oecol. 124: 476-486, 2000. Go to original source...
  9. Cate, T.M., Perkins, T.D.: Chlorophyll content monitoring in sugar maple (Acer saccharum). - Tree Physiol. 23: 1077-1079, 2003. Go to original source...
  10. Close, D.C., Beadle, C.L.: The ecophysiology of foliar anthocyanin. - Bot. Rev. 69: 149-161, 2003. Go to original source...
  11. Close, D.C., Beadle, C.L.: Xanthophyll-cycle dynamics and rapid induction of anthocyanin synthesis in Eucalyptus nitens seedlings transferred to photoinhibitory conditions. - J. Plant Physiol. 162: 37-46, 2005. Go to original source...
  12. Crawley, M.J.: The R Book. - John Wiley & Sons, London 2007.
  13. Ding, P., Fuchigami, L.H., Scagel, C.F.: Simple linear regression and reflectance sensitivity analysis used to determine the optimum wavelengths for the nondestructive assessment of chlorophyll in fresh leaves using spectral reflectance. - J. Amer. Soc. Hort. Sci. 134: 48-57, 2009. Go to original source...
  14. Evans, J.R., Poorter, H.: Photosynthetic acclimation of plants to growth irradiance: the relative importance of specific leaf area and nitrogen in maximizing carbon gain. - Plant Cell Environ. 24: 755-767, 2001. Go to original source...
  15. Feild, T.S., Lee, D.W., Holbrook, N.M.: Why leaves turn red in autumn. The role of anthocyanins in senescing leaves of redosier dogwood. - Plant Physiol. 127: 566-574, 2001. Go to original source...
  16. Gamon, J.A., Surfus, J.S.: Assessing leaf pigment content and activity with a reflectometer. - New Phytol. 143: 105-117, 1999. Go to original source...
  17. Gitelson, A.A.: Wide dynamic range vegetation index for remote quantification of biophysical characteristics of vegetation. - J. Plant Physiol. 161: 165-173, 2004. Go to original source...
  18. Gitelson, A.A., Chivkunova, O.B., Merzlyak, M.N.: Nondestructive estimation of anthocyanins and chlorophyll in anthocyanic leaves. - Amer. J. Bot. 96: 1861-1868, 2009. Go to original source...
  19. Gitelson, A.A., Gritz, U., Merzlyak M.N.: Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves. - J. Plant Physiol. 160: 271-282, 2003. Go to original source...
  20. Gitelson, A.A., Keydan, G.P., Merzlyak, M.N.: Three-band model for noninvasive estimation of chlorophyll, carotenoids, and anthocyanin contents in higher plant leaves. - Geophys. Res. Lett. 33: 1-5, 2006. Go to original source...
  21. Gitelson, A.A., Merzlyak, M.N.: Spectral reflectance changes associate with autumn senescence of Aesculus hippocastanum L. and Acer platanoides L. leaves. Spectral features and relation to chlorophyll estimation. - J. Plant Physiol. 143: 286-292, 1994. Go to original source...
  22. Grace, J., Nichol, C., Disney, M., Lewis, P., Quaife, T., Bowyer, P.: Can we measure terrestrial photosynthesis from space directly, using spectral reflectance and fluorescence? - Glob. Change Biol. 13: 1484-1497, 2007. Go to original source...
  23. Hashemi, S.A.: Investigation of phenology events in a broad leaf forest in relation to chlorophyll content change. - World Appl. Sci. J. 9: 1052-1061, 2010.
  24. Hawkins, T.S., Gardiner, E.S., Comer, G.S.: Modeling the relationship between extractable chlorophyll and SPAD-502 readings for endangered plant species research. - J. Nat. Conserv. 17: 123-127, 2009. Go to original source...
  25. Hendry, G.A.F., Price, A.H.: Stress indicators: chlorophylls and carotenoids. - In: Hendry, G.A.F., Grime, J.P. (ed.): Methods in Comparative Plant Ecology. Pp. 148-152. Chapman & Hall, London 1993. Go to original source...
  26. Hoch, W.A., Zeldin, E.L., McCown, B.H.: Physiological significance of anthocyanins during autumnal leaf senescence. - Tree Physiol. 21: 1-8, 2001. Go to original source...
  27. Jordan, C.F.: Derivation of leaf area index from quality of light in the forest floor. - Ecology 50: 663-666, 1969. Go to original source...
  28. Karageorgou, P., Manetas, Y.: The importance of being red when young: anthocyanins and the protection of young leaves of Quercus coccifera from insect herbivory and excess light. - Tree Physiol. 26: 613-621, 2006. Go to original source...
  29. Le Maire, G., François, C., Dufrêne, E.: Towards universal broad leaf chlorophyll indices using PROSPECT simulated database and hyperspectral reflectance measurements. - Remote Sens. Environ. 89: 1-28, 2004. Go to original source...
  30. Lee, D.W.: Anthocyanins in autumn leaf senescence. - Adv. Bot. Res. 37: 147-165, 2002. Go to original source...
  31. Manetas, Y., Grammatikopoulos, G., Kyparissis, A.: The use of the portable, non-destructive, SPAD-502 (Minolta) chlorophyll meter with leaves of varying trichome density and anthocyanin content. - J. Plant Physiol. 153: 513-516, 1998. Go to original source...
  32. Marazzi, A., Villar, A.J., Yohai, V.J.: Robust response transformations based on optimal prediction. - J. Amer. Statistical Assoc. 104: 360-370, 2009. Go to original source...
  33. Marazzi, A., Yohai, V.J.: Robust Box-Cox transformations for simple regression. - In: Hubert, M., Pison, G., Struyf, A., Van Aelst, S. (ed.): Theory and applications of recent robust methods. Pp. 173-182. Birkhäuser Verlag, Basel 2004. Go to original source...
  34. Margis, R., Felix, D., Caldas, J.F., Salgueiro, F., De Araujo, D.S.D., Breyne, P., Van Montagu, M., De Oliveira, D., Margis-Pinheiro, M.: Genetic differentiation among three neighboring Brazil-cherry (Eugenia uniflora L.) populations within the Brazilian Atlantic rain forest. - Biodivers. Conserv. 11: 149-163, 2002. Go to original source...
  35. Markwell, J., Osterman, J.C., Mitchell, J.L.: Calibration of the Minolta SPAD-502 leaf chlorophyll meter. - Photosynth. Res. 46: 467-472, 1995. Go to original source...
  36. Mendez, M., Jones, D.G., Manetas, Y.: Enhanced UV-B radiation under field conditions increases anthocyanin and reduces the risk of photoinhibition but does not affect growth in the carnivorous plant Pinguicula vulgaris. - New Phytol. 144: 275-282, 1999. Go to original source...
  37. Merzlyak, M.N., Chivkunova, O.B., Solovchenko, A.E., Naqvi, R.: Light absorption by anthocyanins in juvenile, stressed, and senescing leaves. - J. Exp. Bot. 59: 3903-3911, 2008. Go to original source...
  38. Mielke, M.S., Schaffer, B., Li, C.: Use of a SPAD meter to estimate chlorophyll content in Eugenia uniflora L. leaves as affected by contrasting light environments and soil flooding. - Photosynthetica 48: 332-338, 2010. Go to original source...
  39. Mielke, M.S., Schaffer, B.: Photosynthetic and growth responses of Eugenia uniflora L. seedlings to soil flooding and light intensity. - Environ. Exp. Bot. 68: 113-121, 2010. Go to original source...
  40. Peñuelas, J., Filella, I.: Visible and near-infrared reflectance techniques for diagnosing plant physiological status. - Trends Plant Sci. 3: 151-156, 1998. Go to original source...
  41. Perry, E.M., Davenport, J.R.: Spectral and spatial differences in response of vegetation indices to nitrogen treatments on apple. - Comput. Eletron. Agr. 59: 56-65, 2007. Go to original source...
  42. Pettorelli, N., Vik, J.O., Mysterud, A., Gaillard, J-M., Tucker, C.J., Stenseth, N.C.: Using the satellite-derived NDVI to assess ecological responses to environmental change. - Trends Ecol. Evol. 20: 503-510, 2005. Go to original source...
  43. Pinkard, E.E., Patel, V., Mohammed, C.: Chlorophyll and nitrogen determination for plantation-grown Eucalyptus nitens and E. globulus using a non-destructive meter. - For. Ecol. Manage. 223: 211-217, 2006. Go to original source...
  44. Poorter, H., Niinemets, Ü., Poorter, L., Wright, I., Villar, R.: Causes and consequences of variation in leaf mass per area (LMA): a meta-analysis. - New Phytol. 182: 565-588, 2009. Go to original source...
  45. R Development Core Team. 2010: R: A language and environment for statistical computing. R Foundation for Statistical Computing. http://www.R-project.org.
  46. Richardson, A.D., Duigan, S.P., Berlyn, G.P.: An evaluation of noninvasive methods to estimate foliar chlorophyll content. - New Phytol. 153: 185-194, 2002. Go to original source...
  47. Rouse, J.W., Haas, R.H., Jr., Schell, J.A., Deering, D.W.: Monitoring vegetation systems in the Great Plains with ERTS. In: NASA SP-351. Third ERTS-1 Symposium NASA, vol. 1, Pp. 309-317. Washington 1974.
  48. Sims, D.A., Gamon, J.A.: Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. - Remote Sens. Environ. 81: 337-354, 2002. Go to original source...
  49. Slaton, M.R., Hunt, E.R., Jr., Smith, W.K.: Estimating nearinfrared leaf reflectance from leaf structural characteristics. - Amer. J. Bot. 88: 278-284, 2001. Go to original source...
  50. Sokal, R.R., Rohlf, F.J.: Biometry: The Principles and Practice of Statistics in Biological Research. - W.H. Freeman & Comp., New York 1995.
  51. Steele, M., Gitelson, A.A., Rundquist, D.: Nondestructive estimation of leaf chlorophyll content in grapes. - Amer. J. Enol. Vitic. 59: 299-305, 2008. Go to original source...
  52. Steele, M., Gitelson, A.A., Rundquist, D., Merzlyak, M.N.: Nondestructive estimation of anthocyanin content in grapevine leaves. - Amer. J. Enol. Vitic. 60: 87-92, 2009. Go to original source...
  53. Uddling, J., Gelang-Alfredsson, J., Piikki, K., Pleijel, H.: Evaluating the relationship between leaf chlorophyll concentration and SPAD-502 chlorophyll meter readings. - Photosynth. Res. 91: 37-46, 2007. Go to original source...
  54. Valladares, F., Niinemets, U.: Shade tolerance, a key plant feature of complex nature and consequences. - Annu. Rev. Ecol. Evol. Syst. 39: 237-257, 2008. Go to original source...
  55. Venables, W.N., Ripley, B.D.: Modern Applied Statistics with S. - Springer, New York 2002. Go to original source...
  56. Wen, L., Chen, T., Zhang, M., Wang, Y., Zhang, Y., Duan, Z., An, L., Jian, Q., Peng, R.: High contents of anthocyanins in young leaves are correlated with low pools of xanthophyll cycle components and low risk of photoinhibition. - Acta Physiol. Plant 32: 801-808, 2010. Go to original source...
  57. Wu, C., Niu, Z., Tang, Q., Huang, W.: Estimating chlorophyll content from hyperspectral vegetation indices: modeling and validation. - Agr. Forest Meteorol. 148: 1230-1241, 2008. Go to original source...