Photosynthetica 2012, 50(3):411-421 | DOI: 10.1007/s11099-012-0054-2

Investigation of the ameliorating effects of eggplant, datura, orange nightshade, local Iranian tobacco, and field tomato as rootstocks on alkali stress in tomato plants

Y. Mohsenian1, H. R. Roosta1,*, H. R. Karimi1, M. Esmaeilizade1
1 Department of Horticulture, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran

Among the most important quality parameters of irrigation water used for greenhouse crops, alkalinity of water is considered critical due to its impact on soil or growing medium solution pH. In this study, plant growth, Fe content, photosynthetic pigment content, maximal quantum yield of PSII photochemistry (Fv/Fm), performance index (PI), leaf relative water content (LRWC), and soluble sugars concentration were investigated in nongrafted and grafted tomato (Lycopersicon esculentum Mill. cv. Red stone) plants onto five rootstocks of eggplant (Solanum melongena cv. Long purple), datura (Datura patula), orange nightshade (Solanum luteum Mill.), local Iranian tobacco (Nicotiana tabacum), and field tomato (Lycopersicon esculentum Mill. cv. Cal.jn3), exposed to 0, 5, and 10 mM NaHCO3 concentrations, to determine whether grafting could improve alkalinity tolerance of tomato. Significant depression of leaf area, leaf and stem dry mass, shoot and root Fe content and LRWC under high NaHCO3 level was observed in both grafted and ungrafted plants. The highest reduction in the shoot Fe content was observed at 10 mM sodium bicarbonate in control plants (greenhouse tomato). Moreover, at high HCO3 - level, the highest percentage of LRWC reduction was also recorded in ungrafted plants. Values of Fv/Fm and PI decreased significantly at 5 and 10 mM NaHCO3 irrespective of rootstock type. The present study revealed that soluble sugars content, photosynthetic pigments content, Fv/Fm and PI values in plants grafted onto datura rootstock were higher than those in nongrafted and rest of the grafted plants. Thus, the use of datura rootstock could provide a useful tool to improve alkalinity tolerance of tomato plants under NaHCO3 stress.

Additional key words: chlorophyll fluorescence; grafting; Lycopersicon esculentum; NaHCO3; performance index

Received: December 10, 2011; Accepted: May 7, 2012; Published: September 1, 2012  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Mohsenian, Y., Roosta, H.R., Karimi, H.R., & Esmaeilizade, M. (2012). Investigation of the ameliorating effects of eggplant, datura, orange nightshade, local Iranian tobacco, and field tomato as rootstocks on alkali stress in tomato plants. Photosynthetica50(3), 411-421. doi: 10.1007/s11099-012-0054-2
Download citation

References

  1. Ahmad, P., Sharma, S.: Salt stress and phyto-biochemical responses of plants. - Plant Soil Environ. 54: 89-99, 2008. Go to original source...
  2. Álvarez-Fernández, A., García-Marco, S, Lucena, J.J.: Evaluation of synthetic iron(III)-chelates (EDDHA/Fe3+, EDDHMA/Fe3+ and the novel EDDHSA/Fe3+) to correct iron chlorosis. - Eur. J. Agron. 22: 119-130, 2005. Go to original source...
  3. Arnon, D.I.: Copper enzymes in isolated chloroplasts polyphenoloxidase in Beta vulgaris. - Plant Physiol. 24: 1-15, 1949. Go to original source...
  4. Bailey, D.A., Hammer, P.A.: Growth and nutritional status of petunia and tomato seedlings with acidified water. - HortSci. 21: 423-425, 1986. Go to original source...
  5. Balaguer, L., Pugnaire, F.I., Martinez-Ferri, E., Armas, C., Valladares, F., Manrique, E.: Ecophysiological significance of chlorophyll loss and reduced photochemical efficiency under extreme aridity in Stipa tenacissima L. - Plant Soil. 240: 343-352, 2002. Go to original source...
  6. Bertamini, M., Nedunchezhian, N., Borghi, B.: Effect of iron deficiency induced changes on photosynthetic pigments, ribulose-1,5-bisphosphate carboxylase, and photosystem activities in field grown grapevine (Vitis vinifera L. cv. Pinot noir) leaves. - Photosynthetica 39: 59-65, 2001. Go to original source...
  7. Bertoni, G.M., Pissaloux, A., Morad, P., Sayag, D.R.: Bicarbonate-pH relationship with iron chlorosis in white lupine. - J. Plant Nutr. 15: 1509-1518, 1992. Go to original source...
  8. Bloom, P.R.: Soil pH and pH buffering. - In: Sumner, M. (ed.): Handbook of Soil Science. Pp. B-333-352. CRC Press, Boca Raton 2000.
  9. Campbell, S.A., Nishio, J.N.: Iron deficiency studies of sugar beet using an improved sodium bicarbonate-buffered hydroponic growth system. - J. Plant Nutr. 23: 741-757, 2000. Go to original source...
  10. Carter, C.T., Grieve, C.M., Poss, J.A.: Salinity effects on emergence, survival, and ion accumulation of Limonium perezii. - J. Plant Nutr. 28: 1243-1257, 2005. Go to original source...
  11. Chen, S.F., Zhu, Y.L., Liu, Y.L., Li, S.J.: [Effects of NaCl stress on activities of protective enzymes, contents of osmotic adjustment substances and photosynthetic characteristics in grafted tomato seedlings.] - Acta Hort. Sin. 32: 609-613, 2005. [In Chin.]
  12. Chen, W., Feng, C., Guo, W., Shi, D., Yang C.: Comparative effects of osmotic-, salt- and alkali stress on growth, photosynthesis, and osmotic adjustment of cotton plants. - Photosynthetica 49: 417-425, 2011. Go to original source...
  13. Clark, A.J., Landolt, W., Bucher, J.B., Strasser, R.J.: Beech (Fagus sylvatica) response to ozone exposure assessed with a chlorophyll a fluorescence performance index. - Environ. Pollut. 109: 501-507, 2000. Go to original source...
  14. Claussen, W.: Proline as a measure of stress in tomato plants. - Plant Sci. 168: 241-248, 2005. Go to original source...
  15. Colla, G., Rouphael, Y., Cardarelli, M., Salerno, A., Rea, E.: The effectiveness of grafting to improve alkalinity tolerance in watermelon. - Environ. Exp. Bot. 68: 283-291, 2010a. Go to original source...
  16. Colla, G., Rouphael, Y., Leonardi, C., Bie, Z.: Role of grafting in vegetable crops grown under saline conditions. - SciHort. 127: 147-155, 2010b. Go to original source...
  17. Dasgan, H.Y., Ozturk, L., Abak, K., Cakmak, I.: Activities of iron-containing enzymes in leaves of two tomato genotypes differing in their resistance to Fe chlorosis. - J. Plant Nutr. 26: 1997-2007, 2003. Go to original source...
  18. De Ell, J.R, Toivonen, P.M.A.: Use of chlorophyll fluorescence in postharvest quality assessments of fruits and vegetables. - In: De Ell, J.R., Tiovonen P.M.A. (ed.): Practical Applications of Chlorophyll Fluorescence in Plant Biology. Pp. 201-242. Kluwer Acad. Publ., Boston 2003. Go to original source...
  19. Demmig-Adams, B., Adams, W.W.,III: Carotenoid composition in sun and shade leaves of plants with different life forms. - Plant Cell Environ. 15: 411-419, 1992. Go to original source...
  20. Deng, C.N., Zhang, G.X., Pan, X.L., Zhao, K.Y.: Chlorophyll fluorescence and gas exchange responses of maize seedlings to saline-alkaline stress. - Bulg. J. Agr. Sci. 16: 49-58, 2010.
  21. Fernandez-Garcia, N., Martinez, V., Cedra, A., Garvajal, M.: Fruit quality of grafted tomato plants grown under saline conditions. - J. Hort. Sci. Biotech. 79: 995-1001, 2004. Go to original source...
  22. Gogorcena, Y., Abadía, J., Abadía, A.: A new technique for screening iron-efficient genotypes in peach rootstocks: Elicitation of root ferric chelate reductase by manipulation of external iron concentrations. - J. Plant Nutr. 27: 1701-1715, 2004. Go to original source...
  23. Hoagland, D.R., Arnon, D.I. The water culture method for growing plants without soil. - Circular 347, California Agr. Exp. Station, Univ. California, Berkeley 1950.
  24. Huang, Y., Bie, Z.L., Liu, Z.X., Zhen, A., Wang, W.J.: Protective role of proline against salt stress is partially related to the improvement of water status and peroxidase enzyme activity in cucumber. - Soil Sci. Plant Nutr. 55: 698-704. 2009b. Go to original source...
  25. Huang, Y., Zhu, J., Zhen, A., Chen, L., Bie, Z.L.: Organic and inorganic solutes accumulation in the leaves and roots of grafted and ungrafted cucumber plants in response to NaCl stress. - J. Food Agr. Environ. 7: 703-708, 2009a.
  26. Hulsebosch, R.J., Hoff, A.J., Shuvalov, V.A.: Influence of KF, DCMU and remove of Ca2+ on the light-spin EPR signal of the cytochrome b-559 iron (III) ligated by OH-in chloroplasts. - Biochim. Biophys. Acta 1277: 103-106, 1996. Go to original source...
  27. Irigoyen, J.J., Emerich, D.W., Sanchez-Diaz, M.: Water stress induced changes in concentrations of proline and total soluble sugars in nodulated alfalfa (Medicago sativa) plants. - Physiol. Plant. 84: 55-60, 1992. Go to original source...
  28. Jain, D, Chattopadhyay, D.: Analysis of gene expression in response to water deficit of chickpea (Cicer arietinum L.) varieties differing in drought tolerance. - BMC Plant Biol. 10: e24. doi:10.1186/1471-2229-10-24, 2010. Go to original source...
  29. James, R.A., Munns, R., von Caemmerer, S., Trejo, C., Miller, C., Condou, T.(A.G.): Photosynthetic capacity is related to the cellular and subcellular partitioning of Na+, K+ and Cl- in saltaffected barley and durum wheat. - Plant Cell Environ. 29: 2185-2197, 2006. Go to original source...
  30. Jiang, C.D., Shi, L., Gao, H.Y., Schansker, G., Tóth, S.Z., Strasser, R.J.: Development of photosystems 2 and 1 during leaf growth in grapevine seedlings probed by chlorophyll a fluorescence transient and 820 nm transmission in vivo. - Photosynthetica 44: 454-463, 2006. Go to original source...
  31. Katerji, N., van Hoorn, J.W., Hamdy, A., Mastrorilli, M.: Osmotic adjustment of sugarbeets in response to soil salinity and its influence on stomatal conductance, growth and yield. - Agr. Water Manage. 34: 57-69, 1997. Go to original source...
  32. Klamkowski, K., Borkowska, B., Treder, W., Tryngiel-GaÆ, A., Krzewiñska, D.: Effect of mycorrhizal inoculation on photosynthetic activity and vegetative growth of cranberry plants grown under different water regimes. - Acta Hort. 838: 109-113, 2009. Go to original source...
  33. Krause, G.H., Weis, E.: Chlorophyll fluorescence and photosynthesis: The basics. - Ann. Review Plant Physiol. Plant. Mol. Biol. 42: 313-349, 1991. Go to original source...
  34. Marschner, H.: Mineral Nutrition of Higher Plants. IIthEd. - Acad. Press, London 1995.
  35. Miller, G.W.; Denney, A., Pushnik, J., Ming-Ho, Y.: The formation of delta aminolevulinate a precursor of chlorophyll in barley and the role of iron. - J. Plant Nutr. 5: 289-300, 1982. Go to original source...
  36. Morales, F., Abadía, A., Abadía, J.: Photosynthesis, quenching of chlorophyll fluorescence and thermal energy dissipation in iron-deficient sugar beet leaves. - Aust. J. Plant Physiol. 25: 403-412, 1998. Go to original source...
  37. Morales, F., Abadía, A., Abadía, J.: Chlorophyll fluorescence and photon yield of oxygen evolution in iron-deficient sugar beet (Beta vulgaris L.) leaves. - Plant Physiol. 97: 886-893, 1991. Go to original source...
  38. Munns, R., Tester, M.: Mechanisms of salinity tolerance. - Annu. Rev. Plant Biol. 59: 651-681, 2008. Go to original source...
  39. Nedunchezhian, N., Morales, F., Abadía, A., Abadía, J.: Decline in photosynthetic electron transport activity and changes in thylakoid protein pattern in field grown iron deficient peach (Prunus persica L.). - Plant Sci. 129: 29-38, 1997. Go to original source...
  40. Parida A.K., Das, B.: Salt tolerance and salinity effects on plants. - Ecotoxicol. Environ. Safety 60: 324-349, 2005. Go to original source...
  41. Pearce, R.C., Li, Y., Bush, L.P.: Calcium and bicarbonate effects on the growth and nutrient uptake of burley tobacco seedlings: float system. - J. Plant Nutr. 22: 1079-1090, 1999. Go to original source...
  42. Pestana, M., Varennes, D.A., Abadía, J., Faria, E.A.: Differential tolerance to iron deficiency of citrus rootstocks grown in nutrient solution, - Sci. Hort. 104: 25-36, 2005. Go to original source...
  43. Petersen, F.H.: Water testing and interpretation. - In: Reed, D.W. (ed.).: Water, Media and Nutrition. Pp. 31-49. Ball Publ., Batavia 1996.
  44. Qun, H.Z., Ru, T.H., Xiu, L.H, Xing, H.C., Bin, Z.Z., Song, W.H.: Arbuscular mycorrhizal alleviated ion toxicity, oxidative damage and enhanced osmotic adjustment in tomato subjected to NaCl stress. - Amer.-Eurasian J. Agric. Environ. Sci. 7: 676-683, 2010.
  45. Redondo-Gómez, S., Mateos-Naranjo, E., Davy, A.J., Fernandez-Muñoz, F., Castellanos, E.M., Luque, T., Figueroa, M.E.: Growth and photosynthetic responses to salinity of the salt-marsh shrub Atriplex portulacoides. - Ann. Bot. 100: 555-563, 2007. Go to original source...
  46. Rideout, J.W., Gooden, D.T., and Martin, S.B.: Corrective measures for growing tobacco seedlings using the float system with water high in bicarbonate. - Tobacco Sci. 39: 130-136, 1995.
  47. Römheld, V., Marschner, H.: Mobilization of iron in the rhizosphere of different plant species. - Adv. J. Plant Nutr. 2: 155-204, 1986.
  48. Roosta, H.R.: Interaction between water alkalinity and nutrient solution pH on the vegetative growth, chlorophyll fluorescence and leaf Mg, Fe, Mn and Zn concentrations in lettuce. - J. Plant Nutr. 34: 717-731, 2011. Go to original source...
  49. Savvas, D., Colla, G., Rouphael, Y., Schwarz, D.: Amelioration of heavy metaland nutrient stress in fruit vegetables by grafting. - Sci. Hort. 127: 156-161, 2010. Go to original source...
  50. Schwarz, D., Rouphael, Y., Colla, G., Venema, J.H.: Grafting as a tool to improve tolerance of vegetables to abiotic stresses: Thermal stress, water stress and organic pollutants. - Sci. Hort. 127: 162-171. 2010. Go to original source...
  51. Spiller, S., Terry, N.: Limiting factors in photosynthesis. II. Iron stress diminishes photochemical capacity by reducing the number of photosynthetic units. - Plant Physiol. 65: 121-125, 1980. Go to original source...
  52. Strasser, R.J., Srivastava, A., Tsimilli-Michael, M.: The fluorescence transient as a tool to characterize and screen photosynthetic samples. - In: Yunus, M. (ed.): Probing Photosynthesis: Mechanisms, Regulation and Adaptation. Pp.445-483. Taylor & Francis, London, 2000.
  53. Strauss, A.J., Krüger, G.H.J., Strasser, R.J., van Heerden, P.D.R.: Ranking of dark chilling tolerance in soybean genotypes probed by the chlorophyll a fluorescence transient O-J-I-P. - Environ. Exp. Bot. 56: 147-157, 2006. Go to original source...
  54. Sultana, N., Ikeda, T., Itoh, R.: Effect of NaCl salinity on photosynthesis and dry matter accumulation in developing rice grains. - Environ. Exp. Bot. 42: 211-220, 1999. Go to original source...
  55. Szaniawski, R.K.: Plant stress and homeostasis. - Plant Physiol. Biochem. 25: 63-72, 1987.
  56. Terry, N.: Limiting factors in photosynthesis. Use of iron stress to control photochemical capacity in vivo. - Plant Physiol. 65: 114-20, 1980. Go to original source...
  57. Valdez-Aguilar, L.A.: Effect of alkalinity in irrigation water on selected greenhouse ornamental plants. - PhD Dissertation, College Station, Texas A&M Univ, Texas 2004. Go to original source...
  58. Valdez-Aguilar, L.A., Reed, D.W.: Growth and nutrition of young bean plants under high alkalinity as affected by mixtures of ammonium, potassium, and sodium. - J. Plant Nutr. 33: 1472-1488, 2010. Go to original source...
  59. Valdez-Aguilar, L.A., Reed, D.W.: Response of selected greenhouse ornamental plants to alkalinity in irrigation water. - J. Plant Nutr. 30: 441-452, 2007. Go to original source...
  60. Wang, H., Ahan, J., Wu Z., Shi D., Liu B., Yang, C.: Alteration of nitrogen metabolism in rice variety 'Nipponbare' induced by alkali stress. - Plant Soil 355: 131-147, 2012. Go to original source...
  61. Weatherley, P.E.: Studies in water relations of cotton plants. I. The field measurement of water deficits in leaves. - New Phytol. 49: 81-97, 1950. Go to original source...
  62. Xiong, Z.T., Li, Y.H., Xu, B.: Nutrition influence on copper accumulation by Brassica pekinensis Rupr. - J. Ecotoxicol. Environ. Safety 53: 200-205, 2002. Go to original source...
  63. Yang, C.W., Chong, J.N., Li, C.Y., Kim, C.M., Shi, D.C., Wang, D.L.: Osmotic adjustment and ion balance traits of an alkali resistant halophyte Kochia sieversiana during adaptation to salt and alkali conditions. - Plant Soil 294: 263-276, 2007. Go to original source...
  64. Yang, C.W., Shi, D.C., Wang, D.L.: Comparative effects of salt and alkali stresses on growth, osmotic adjustment and ionic balance of an alkali-resistant halophyte Suaeda glauca (Bge.). - Plant Growth Regul. 56: 179-190, 2008b. Go to original source...
  65. Yang, C.W., Wang, P., Li, C.Y., Shi, D.C., Wang, D.L.: Comparison of effects of salt and alkali stresses on the growth and photosynthesis of wheat. - Photosynthetica 46: 107-114, 2008a. Go to original source...
  66. Yang, C.W., Xu, H.H., Wang, L.L., Liu, J., Shi, D.C., Wang, D.L.: Comparative effects of salt-stress and alkali-stress on the growth, photosynthesis, solute accumulation, and ion balance of barley plants. - Photosynthetica 47: 79-86, 2009b. Go to original source...
  67. Yang, C.W., Zhang, M. L., Liu, J., Shi, D. C., Wang, D. L.: Effects of buffer capacity on growth, photosynthesis, and solute accumulation of a glycophyte (wheat) and a halophyte (Chloris virgata). - Photosynthetica 47: 55-60, 2009a. Go to original source...
  68. Yang, C., Guo, W. Shi, D.: Physiological roles of organic acids in alkali-tolerance of the alkali-tolerant halophyte Chloris virgata. - Agron. J. 102: 1081-1089, 2010. Go to original source...
  69. Yang, J.-Y., Zheng, W., Tian, Y., Wu, Y., and Zhou, D.W.: Effects of various mixed salt-alkaline stresses on growth, photosynthesis, and photosynthetic pigment concentrations of Medicago ruthenica seedlings. - Photosynthetica 49: 275-284, 2011. Go to original source...