Photosynthetica 2015, 53(3):455-463 | DOI: 10.1007/s11099-015-0127-0

Responses of gas exchange, chlorophyll synthesis and ROS-scavenging systems to salinity stress in two ramie (Boehmeria nivea L.) cultivars

C. J. Huang1,2, G. Wei2, Y. C. Jie1,*, J. J. Xu2, S. Y. Zhao2, L. C. Wang3, S. A. Anjum3
1 Institute of Ramie, Hunan Agricultural University, Changsha, China
2 Dazhou Institute of Agricultural Sciences, Sichuan, China
3 College of Agronomy and Biotechnology, Southwest University, Chongqing, China

Ramie (Boehmeria nivea L.) is an important crop that serves as fine fiber material, high protein feedstuff, and valuable herbal medicine in China. However, increasing salinity in soil limits the productivity. We investigated in a greenhouse experiment responses to salinity in two ramie cultivars, Chuanzhu-12 (salt-tolerant cultivar, ST) and Xiangzhu-2 (salt-sensitive cultivar, SS), to elucidate the salt tolerance mechanism of this species. Salinity stress substantially reduced both chlorophyll and carotenoid contents. In addition, net photosynthesis, transpiration rate, stomatal conductance, intercellular CO2 concentration, and the ratio of intercellular CO2 to ambient CO2 were affected, less in ST. Nevertheless, salinity stress markedly improved water use efficiency and intrinsic water use efficiency in both species. Moreover, relative water contents, soluble proteins, and catalase activity were substantially impaired, while proline accumulation and superoxide dismutase activity were enhanced substantially, more in ST. Furthermore, noteworthy increase in peroxidase activity and decrease in malondialdehyde content was recorded in ST, whereas, in SS, these attributes changed conversely. Overall, the cultivar ST exhibited salt tolerance due to its higher photosynthetic capacity, chlorophyll content, antioxidative enzyme activity, and nonenzymatic antioxidants, as well as reduced lipid peroxidation and maintenance of the tissue water content. This revealed the salt tolerance mechanism of ramie plants for adaptation to salt affected soil.

Additional key words: abiotic stress; photosynthesis; pigments; lipid peroxidation; antioxidant enzymes

Received: April 18, 2014; Accepted: August 28, 2014; Published: September 1, 2015  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Huang, C.J., Wei, G., Jie, Y.C., Xu, J.J., Zhao, S.Y., Wang, L.C., & Anjum, S.A. (2015). Responses of gas exchange, chlorophyll synthesis and ROS-scavenging systems to salinity stress in two ramie (Boehmeria nivea L.) cultivars. Photosynthetica53(3), 455-463. doi: 10.1007/s11099-015-0127-0
Download citation

References

  1. Apel K., Hirt H.: Reactive oxygen species: metabolism, oxidative stress, and signal transduction. - Annu. Rev. Plant Biol. 55: 373-399, 2004. Go to original source...
  2. Arnon D. T.: Copper enzyme in isolated chloroplasts polyphenoloxidase in Beta vulgaris. - Plant Physiol. 24: 1-15, 1949. Go to original source...
  3. Bates L. S., Waldren R. P., Teare I. D.: Rapid determination of free proline for water-stress studies. - Plant Soil 39: 205-207, 1973. Go to original source...
  4. Bradford M. M.: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. - Annal. Biochem. 72: 248-254, 1976. Go to original source...
  5. Chen C., Dickman M. B.: Proline suppresses apoptosis in the fungal pathogen Colletotrichum trifolii. - P. Natl. Acad. Sci. USA 102: 3459-3464, 2005. Go to original source...
  6. Cha-um S., Kirdmanee C.: Effect of salt stress on proline accumulation, photosynthetic ability and growth characters in two maize cultivars. - Pak. J. Bot. 41: 87-98, 2009.
  7. De Vos C. H. R., Schat H., De Waal M. A. M. et al.: Increased resistance to copper-induced damage of the root cell plasmalemma in copper tolerant Silene cucubalus. - Physiol. Plantarum 82: 523-528, 1991. Go to original source...
  8. Gill S. S., Tuteja N.: Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. - Plant Physiol. Biochem. 48: 909-930, 2010. Go to original source...
  9. Gossett D. R., Millhollon E. P., Lucas M. C.: Antioxidant response to NaCl stress in salt-tolerant and salt-sensitive cultivars of cotton. - Crop Sci. 34: 706-714, 1994. Go to original source...
  10. Hichem H., Ei Naceur A., Mounir D.: Effects of salt stress on photosynthesis, PSII photochemistry and thermal energy dissipation in leaves of two corn (Zea mays L.) varieties. - Photosynthetica 47: 517-526, 2009. Go to original source...
  11. Hu L. X., Li H. Y., Pang H. C. et al.: Responses of antioxidant gene, protein and enzymes to salinity stress in two genotypes of perennial ryegrass (Lolium perenne) differing in salt tolerance. - J. Plant Physiol. 169: 146-156, 2012. Go to original source...
  12. Huang C. J., Wei G., Jie Y. C. et al.: Effects of concentrations of sodium chloride on photosynthesis, antioxidative enzymes, growth and fiber yield of hybrid ramie. - Plant Physiol. Biochem. 76: 86-93, 2014. Go to original source...
  13. Huang K. L., Lai Y. K., Lin C. C. et al.: Inhibition of hepatitis B virus production by Boehmeria nivea root extract in HepG2 2.2.15 cells. - World J. Gastroentero. 12: 5721-5725, 2006. Go to original source...
  14. Huang Y., Bie Z. L., Liu Z. X. et al.: Improve cucumber photosynthetic capacity under NaCl stress by grafting on to two salt tolerant pumpkin rootstocks. - Biol. Plantarum 55: 285-290, 2011. Go to original source...
  15. Jiang Q. Z., Roche D., Monaco T. A. et al.: Gas exchange, chlorophyll fluorescence parameters and carbon isotope discrimination of 14 barley genetic lines in response to salinity. - Field Crop. Res. 96: 269-278, 2006. Go to original source...
  16. Kong-Ngern K., Daduang S., Wongkham C. et al.: Protein profiles in response to salt stress in leaf sheaths of riceseedlings. - Sci. Asia 31: 403-408, 2005. Go to original source...
  17. Knox J. P., Dodge A. O.: Singlet oxygen and plants. - Phytochemistry 24: 889-896, 1985. Go to original source...
  18. Khan N. A., Nazar R., Anjum N. A.: Growth, photosynthesis and antioxidant metabolism in mustard (Brassica juncea L.) cultivars differing in ATP-sulfurylase activity under salinity stress. - Sci. Hortic.-Amsterdam 122: 455-460, 2009. Go to original source...
  19. Lichtenthaler H. K., Wellburn A. R.: Determinations of total carotenoids and chlorophyll a and b of leaf extracts in different solvents. - Biochem. Soc. T. 63: 591-592, 1983. Go to original source...
  20. Läuchli A., Grattan S. R.: Plant growth and development under salinity stress. - In: M.A. Jenks et al. (ed.): Advances in Molecular Breeding toward Drought and Salt Tolerant Crops. Pp. 1-32. Springer, Dordrecht 2007. Go to original source...
  21. Lee Y. R., Nho J. W., Hwang I. G., et al.: Chemical composition and antioxidant activity of ramie leaf (Boehmeria nivea L.). - Food Sci. Biotechnol. 18: 1096-1099, 2009.
  22. Li G., Wan S. W., Zhou J. et al.: Leaf chlorophyll fluorescence, hyperspectral reflectance, pigments content, malondialdehyde and proline accumulation responses of castor bean (Ricinus communis L.) seedlings to salt stress levels. - Ind. Crop Prod. 31: 13-19, 2010. Go to original source...
  23. Lin C. C., Yen M. H., Lo T. S. et al.: The anti-inflammatory and liver protective effects of Boehmeria nivea and B. nivea subsp. nippononivea in rats. - Phytomedicine 4: 301-308, 1997. Go to original source...
  24. Liu F. H.: [Sampling techniques in test of net photosynthetic rate of plant cultivars, an example from ramie (Boehmeria nivea L.)]. - J. Yunnan Univ. 32: 221-226, 2010. [In Chinese]
  25. Meloni D. A., Oliva M. A., Martinez C. A. et al.: Photosynthesis and activity of superoxide dismutase, peroxidase and glutathione reductase in cotton under salt stress. - Environ. Exp. Bot. 49: 69-76, 2003. Go to original source...
  26. Meng H. B., Jiang S. S., Hua S. J. et al.: Comparison between a tetraploid turnip and its diploid progenitor (Brassica rapa L.): the adaptation to salinity stress. - Agr. Sci. China 10: 363-375, 2011. Go to original source...
  27. Mundree S. G., Baker B., Mowla S. et al.: Physiological and molecular insights into drought tolerance. - Afr. J. Biotechnol. 1: 28-38, 2002. Go to original source...
  28. Munir S., Siddiqi E. H., Bhatti K. H. et al.: Assessment of intercultivar variations for salinity tolerance in winter radish (Raphanus sativus L.) using photosynthetic attributes as effective selection criteria. - World Appl. Sci. J. 21: 384-388, 2013.
  29. Munns R., James R. A., Läuchli A.: Approaches to increasing the salt tolerance of wheat and other cereals. - J. Exp. Bot. 57: 1025-1043, 2006. Go to original source...
  30. Panda S. K., Khan M. H.: Growth, oxidative damage and antioxidant responses in greengram (Vigna radiata L.) under short-term salinity stress and its recovery. - J. Agron. Crop. Sci. 195: 442-454, 2009. Go to original source...
  31. Pérez-López U., Robredo A., Lacuesta M., et al.: The oxidative stress caused by salinity in two barley cultivars is mitigated by elevated CO2. - Physiol. Plantarum 135: 29-42, 2009. Go to original source...
  32. Rhodes D., Samaras Y.: Genetic control of osmoregulation in plants. - In: K. Strange (ed.): Cellular and Molecular Physiology of Cell Volume Regulation. Pp. 347-361. CRC Press, Boca Raton 1994. Go to original source...
  33. Rout N. P., Shaw B. P.: Salt tolerance in aquatic macrophytes: possible involvement of the antioxidative enzymes. - Plant Sci. 160: 415-423, 2001. Go to original source...
  34. Sabir P., Ashraf M., Akram N. A.: Accession variation for salt tolerance in proso millet (Panicum miliaceum L.) using leaf proline content and activities of some key antioxidant enzymes. - J. Agron. Crop Sci. 197: 340-347, 2011. Go to original source...
  35. Sadder M. T., Anwar F., Al-Doss A. A.: Gene expression and physiological analysis of Atriplex halimus (L.) under salt stress. - Aust. J. Crop Sci. 7: 112-118, 2013.
  36. Shaheen H. L., Shahbaz M.: Salt-induced effects on some key morpho-physiological attributes of cotton (Gossypium hirsutum L.) at various growth stages. - Soil Environ. 31: 125-133, 2012.
  37. Sharma P. K., Hall D. O.: Changes in carotenoid composition and photosynthesis in sorghum under high light and salt stresses. - J. Plant. Physiol. 140: 661-666, 1992. Go to original source...
  38. Smirnoff N., Cumbes Q. J.: Hydroxyl radical scavenging activity of compatible solutes. - Phytochemistry 28: 1057-1060, 1989. Go to original source...
  39. Tian X. Y., Xu M., Deng B. et al.: The effects of Boehmeria nivea (L.) Gaud on embryonic development: In vivo and in vitro studies. - J. Ethnopharmacol. 134: 393-398, 2011. Go to original source...
  40. Teisseire H., Guy V.: Copper-induced changes in antioxidant enzymes activities in fronds of duckweed (Lemna minor). - Plant Sci. 153: 65-72, 2000. Go to original source...
  41. Upadhyaya A., Sankhla D., Davis T. D. et al.: Effect of paclobutrazol on the activities of some enzymes of activated oxygen metabolism and lipid peroxidation in senescing soybean leaves. - J. Plant Physiol. 121: 453-461, 1985. Go to original source...
  42. Wang W., Vinocur B., Altman A.: Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. - Planta 218: 1-14, 2003. Go to original source...
  43. Yadav S., Irfan M., Ahmad A., Hayat S.: Causes of salinity and plant manifestations to salt stress: A review. - J. Environ. Biol. 32: 667-685, 2011.
  44. Yamazaki J., Ohashi A., Hashimoto Y. et al.: Effects of high light and low temperature during harsh winter on needle photodamage of Abies mariesii growing at the forest limit on Mt. Norikura in Central Japan. - Plant Sci. 165: 257-264, 2003. Go to original source...
  45. Yamasaki S., Dillenburg L. C.: Measurements of leaf relative water content in Araucaria angustifolia. - R. Bras. Fisiol. Veg. 11: 69-75, 1999.