Photosynthetica 2017, 55(4):648-654 | DOI: 10.1007/s11099-016-0680-1

Assessment of cadmium phytotoxicity alleviation by silicon using chlorophyll a fluorescence

A. J. Silva1, C. W. A. Nascimento2,*, A. S. Gouveia-Neto3
1 Laboratory of Soils Remediation, Federal University of Sergipe, Sao Cristovao, Brazil
2 Laboratory of Soils Environmental Chemistry, Federal Rural University of Pernambuco, Recife, Brazil
3 Department of Physics, Federal Rural University of Pernambuco, Recife, Brazil

The aim of this study was to investigate the effects of silicon in alleviating cadmium stress in maize plants grown in a nutrient solution and to evaluate the potential of the spectral emission parameters and the ratio of red fluorescence (Fr) to far-red fluorescence (Ffr) in assessing the beneficial effects of Si. An experiment was carried out using a nutrient solution with a toxic dose of Cd and six doses of Si; biomass, Cd, Si, and photosynthetic pigments of the plants were measured. Chlorophyll (Chl) a fluorescence analysis demonstrated that Si alleviated Cd toxicity in plants. Chl fluorescence measurements were sensitive in detecting such effects even when significant changes in biomass production and concentrations of photosynthetic pigments were not observed. The spectral emission and the Fr/Ffr ratio were sensitive to the effects of Si. Silicon caused a reduction in the translocation of Cd to the shoots of maize plants.

Additional key words: metal homeostasis; metal toxicity; soil contamination; soil pollution

Received: May 9, 2016; Accepted: October 27, 2016; Published: December 1, 2017  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Silva, A.J., Nascimento, C.W.A., & Gouveia-Neto, A.S. (2017). Assessment of cadmium phytotoxicity alleviation by silicon using chlorophyll a fluorescence. Photosynthetica55(4), 648-654. doi: 10.1007/s11099-016-0680-1
Download citation

References

  1. Ali S., Farooq M.A., Yasmeen T. et al.: The influence of silicon on barley growth, photosynthesis and ultra-structure under chromium stress. - Ecotox. Environ. Safe. 89: 66-72, 2013. Go to original source...
  2. Alloway B. J.: Heavy Metals in Soils. Pp. 339. Blackie Acad. Professional, Glasgow 1990.
  3. Araújo J.C.T., Nascimento C.W.A., Cunha Filho F.F.: [Availability of silicon and maize biomass in a lead contaminated soil treated with silicate.]. - Ciênc. Agrotec. 35: 878-883, 2011. [In Portuquese] Go to original source...
  4. Arnon D.I.: Copper enzymes in isolated chloroplasts polyphenoloxidase in Beta vulgaris. - Plant Physiol. 24: 1-15, 1949. Go to original source...
  5. Bazzaz M.B., Govindjee.: Effects of cadmium nitrate on spectral characteristics and light reactions of chloroplasts. - Environ. Lett. 6: 1-12, 1974. Go to original source...
  6. Broadhurst C.L., Bauchan G.R., Murphy C.A. et al.: Accumulation of zinc and cadmium and localization of zinc in Picris divaricata Vant. - Environ. Exp. Bot. 87: 1-9, 2013. Go to original source...
  7. Cabot C., Gallego B., Martos S. et al.: Signal cross talk in Arabidopsis exposed to cadmium, silicon, and Botrytis cinerea. - Planta 237: 337-349, 2013. Go to original source...
  8. Chen X., Li H., Chan W.F. et al.: Arsenite transporters expression in rice (Oryza sativa L.) associated with arbuscular mycorrhizal fungi (AMF) colonization under different levels of arsenite stress. - Chemosphere 89: 1248-1254, 2012. Go to original source...
  9. Cherif J., Derbel N., Nakkach M. et al.: Analysis of in vivo chlorophyll fluorescence spectra to monitor physiological state of tomato plants growing under zinc stress. - J. Photoch. Photobio. B 101: 332-339, 2010. Go to original source...
  10. Cherif J., Derbel N., Nakkach M. et al.: Spectroscopic studies of photosynthetic responses of tomato plants to the interaction of zinc and cadmium toxicity. - J. Photoch. Photobio. B 111: 6-16, 2012. Go to original source...
  11. Costa E.T.S., Guilherme L.R.G., de Melo É.E.C. et al.: Assessing the tolerance of castor bean to Cd and Pb for phytoremediation purposes. - Biol. Trace Elem. Res. 145: 93-100, 2012. Go to original source...
  12. Cunha K.P.V., Nascimento C.W.A.: Silicon effects on metal tolerance and structural changes in maize (Zea mays L.) grown on a cadmium and zinc enriched soil. - Water Air Soil Pollut. 197: 323-330, 2009. Go to original source...
  13. Datnoff L.E., Snyder G.H., Korndörfer G.H.: Silicon in Agriculture.-In: Ma J.F., Miyake Y., Takahashi, E. (ed.): Silicon as a Beneficial Element for Crop Plant. Pp. 17-39. Elsevier Science, Amsterdam 2001. Go to original source...
  14. Doncheva S., Poschenrieder C., Stoyanova Z. et al.: Silicon amelioration of manganese toxicity in Mn-sensitive and Mn tolerant maize varieties. - Environ. Exp. Bot. 65: 189-197, 2009. Go to original source...
  15. Feng J., Shi Q., Wang X. et al.: Silicon supplementation ameliorated the inhibition of photosynthesis and nitrate metabolism by cadmium (Cd) toxicity in Cucumis sativus L. - Sci. Hortic.-Amsterdam 123: 521-530, 2010. Go to original source...
  16. Freitas E.V.S., Nascimento C.W.A., Goulart D.F. et al.: [Cadmium and lead availability to corn in soil amended with phosphorus fertilizers.]. - Rev. Bras. Cienc. Solo. 33: 1899-1907, 2009. [In Portuquese] Go to original source...
  17. Gouia H., Ghorbal M.H., Meyer C.: Effects of cadmium on activity of nitrate reductase and on other enzymes of the nitrate assimilation pathway in bean. - Plant Physiol. Bioch. 38: 629-638, 2000. Go to original source...
  18. Gu H., Qui H., Tian T. et al.: Mitigation effects of silicon rich amendments on heavy metal accumulation in rice (Oryza sativa L.) planted on multi-metal contaminated acidic soil. - Chemosphere. 83: 1234-1240, 2011. Go to original source...
  19. Hoagland D.R., Arnon D.L.: The Water Culture Methods for Growing Plants without Soil. Pp. 32. Agric. Univ. California, Berkeley 1950.
  20. Kalaji H.M., Guo P.: Chlorophyll fluorescence: a useful tool in barley plant breeding programs.-In: Sánchez A. Gutierrez S.J. (ed.): Photochemistry Research Progress. Pp. 447-471. Nova Science Publishers, Houppauge 2008.
  21. Kim Y., Khan A., Hamayun M. et al: Influence of short-term silicon application on endogenous physiohormonal levels of Oryza sativa L. under wounding stress.-Biol. Trace Elem. Res. 144: 1175-1185, 2011. Go to original source...
  22. Korndörfer G.H., Pereira H.S., Camargo M.S.: [Calcium and magnesium silicates in agriculture.]. - Boletim Técnico 2: 1-31, 2004. [In Portuquese]
  23. Kumar A., Prasad M.N.V.: Lead-induced toxicity and interferences in chlorophyll fluorescence in Talinum triangulare grown hydroponically. - Photosynthetica 53: 66-71, 2015. Go to original source...
  24. Lagriffoull A., Mocquot B., Mench M. et al.: Cadmium toxicity effects on growth, mineral and chlorophyll contents, and activities of stress related enzymes in young maize plants (Zea mays L.). - Plant Soil 200: 241-250, 1998. Go to original source...
  25. Li P., Song A., Li Z. et al.: Silicon ameliorates manganese toxicity by regulating manganese transport and antioxidant reactions in rice (Oryza sativa L.). - Plant Soil 354: 407-419, 2012. Go to original source...
  26. Liang Y., Sun W., Zhu Y. et al.: Mechanisms of silicon-mediated alleviation of abiotic stresses in higher plants: A review. - Environ. Pollut. 147: 422-428, 2007. Go to original source...
  27. Liu J., Zhang H., Zhang Y. et al.: Silicon attenuates cadmium toxicity in Solanum nigrum L. by reducing cadmium uptake and oxidative stress. - Plant Physiol. Bioch. 68: 1-7, 2013. Go to original source...
  28. Lukačová Kuliková Z., Lux A.: Silicon influence on maize, Zea mays L., hybrids exposed to cadmium treatment. - B. Environ. Contam. Tox. 85: 243-250, 2010. Go to original source...
  29. Lukačová Z., ©vubová R., Kohanová J. et al.: Silicon mitigates the Cd toxicity in maize in relation to cadmium translocation, cell distribution, antioxidant enzymes stimulation and enhanced endodermal apoplasmic barrier development. - Plant Growth Regul. 70: 89-103, 2013. Go to original source...
  30. Marques M.C., Nascimento C.W.A.: [Tolerance of castor bean to zinc assessed by chlorophyll fluorescence and plant nutrition.]. - Rev. Bras. Cienc. Solo 38: 850-857, 2014. [In Portuquese] Go to original source...
  31. Marques M.C., Nascimento C.W.A.: Analysis of chlorophyll fluorescence spectra for the monitoring of Cd toxicity in a bioenergy crop (Jatropha curcas). - J. Photoch. Photobio. B. 127: 88-93, 2013. Go to original source...
  32. Mitani N., Ma J.F., Iwashita T.: Identification of the silicon form in xylem sap of rice (Oryza sativa L.). - Plant Cell Physiol. 46: 279-283, 2005. Go to original source...
  33. Moradi L., Ehsanzadeh P.: Effects of Cd on photosynthesis and growth of safflower (Carthamus tinctorius L.) genotypes. - Photosynthetica 53: 506-518, 2015. Go to original source...
  34. Nascimento C.W.A., Fontes R.L.F., Neves J.C.L.: Mineral composition of two Brazilian corn cultivars as a function of cadmium in the nutrient solution. - J. Plant Nutr. 21: 2369-2379, 1998. Go to original source...
  35. Nwugo C.C., Huerta A.J.: Effects of silicon nutrition on cadmium uptake, growth and photosynthesis of rice plants exposed to low-level cadmium. - Plant Soil 311: 73-86, 2008. Go to original source...
  36. Papageorgiou G.C., Govindjee (ed.): Chlorophyll a Fluorescence: a Signature of Photosynthesis. Pp. 820. Springer, Dordrecht 2004. Go to original source...
  37. Pietrini F. Iannelli M.A. Pasqualini S. et al.: Interaction of cadmium with glutathione and photosynthesis in developing leaves and chloroplasts of Phragmites australis (Cav.) Trin. ex Steudel. - Plant Physiol. 133: 829-837, 2003. Go to original source...
  38. Rizwan M., Meunier J., Miche H. et al.: Effect of silicon on reducing cadmium toxicity in durum wheat (Triticum turgidum L. cv. Claudio W.) grown in a soil with aged contamination. - J. Hazard. Mater. 209: 326-334, 2012. Go to original source...
  39. Silva A.J., Nascimento C.W.A., Gouveia Neto A.S. et al.: LEDinduced chlorophyll fluorescence spectral analysis for the early detection and monitoring of cadmium toxicity in maize plants. - Water Air Soil Pollut. 223: 3527-3533, 2012. Go to original source...
  40. Song A., Li Z., Zhang J. et al.: Silicon-enhanced resistance to cadmium toxicity in Brassica chinensis L. is attributed to Sisuppressed cadmium uptake and transport and Si-enhanced antioxidant defense capacity. - J. Hazard. Mater. 172: 74-83, 2009. Go to original source...
  41. Suriyaprabha R., Karunakaran G., Yuvakkumar R. et al.: Growth and physiological responses of maize (Zea mays L.) to porous silica nanoparticles in soil. - J. Nanopart. Res. 14: 1-14, 2012. Go to original source...
  42. USEPA (United States Environmental Protection Agency): Microwave Assisted Acid Digestion of Sediments, Sludges, Soils, and Oils.-Method 3051A. Pp. 30. U.S. Environ. Protect. Agency, Washington D.C. 2007.
  43. Wang H., Zhao S.C., Liu R.L. et al.: Changes of photosynthetic activities of maize (Zea mays L.) seedlings in response to cadmium stress. - Photosynthetica 47: 277-283, 2009. Go to original source...
  44. Woo N.S., Badger M.R., Pogson B.J.: A rapid, non-invasive procedure for quantitative assessment of drought survival using chlorophyll fluorescence. - Plant Methods 4: 1-14, 2008. Go to original source...
  45. Ye J., Yan C., Liu J. et al.: Effects of silicon on the distribution of cadmium compartmentation in root tips of Kandelia obovata (S., L.) Yong. - Environ. Pollut. 162: 369-373, 2012. Go to original source...
  46. Zhang C., Wang L., Nie Q. et al.: Long-term effects of exogenous silicon on cadmium translocation and toxicity in rice (Oryza sativa L.). - Environ. Exp. Bot. 62: 300-307, 2008 Go to original source...