Photosynthetica 2018, 56(4):998-1009 | DOI: 10.1007/s11099-018-0824-6

Transcriptome profiling of genes involved in photosynthesis in Elaeagnus angustifolia L. under salt stress

J. Lin1, J. P. Li1, F. Yuan1, Z. Yang1, B. S. Wang1,*, M. Chen1,*
1 Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Shandong, China

High salt concentration is a major abiotic stress limiting plant growth and productivity in many areas of the world. Elaeagnus angustifolia L. adapts to adverse environments and is widely planted in the western region of China as a windbreaker and for landscape and soil stabilization. High salt concentrations inhibited photosynthesis of E. angustifolia, but the mechanism is not known. In this paper, RNA-sequencing was used to investigate effects of salt stress on the photosynthetic characteristics of the species. In total, 584 genes were identified and involved in photosynthetic pathways. The downregulation of genes that encode key enzymes involved in photosynthesis and genes correlated to important structures in photosystem and light-harvesting complexes might be the main reason, particularly, the downregulation of the gene that encodes magnesium chelatase. This would decrease the activity of enzymes involved in chlorophyll synthesis and the downregulation of the key gene that encodes Rubisco, and thereby decreases enzyme activity and the protein content of Rubisco.

Additional key words: biomass; greening; ion concentrations; photosynthetic parameters; plant height

Received: June 27, 2017; Accepted: November 22, 2017; Prepublished online: December 1, 2018; Published: November 1, 2018  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Lin, J., Li, J.P., Yuan, F., Yang, Z., Wang, B.S., & Chen, M. (2018). Transcriptome profiling of genes involved in photosynthesis in Elaeagnus angustifolia L. under salt stress. Photosynthetica56(4), 998-1009. doi: 10.1007/s11099-018-0824-6
Download citation

Supplementary files

Download filephs-201804-0003_S1.pdf

File size: 216.75 kB

Download filephs-201804-0003_S2.pdf

File size: 195.37 kB

Download filephs-201804-0003_S3.pdf

File size: 196.42 kB

Download filephs-201804-0003_S4.pdf

File size: 179.74 kB

Download filephs-201804-0003_S5.pdf

File size: 162.77 kB

Download filephs-201804-0003_S6.pdf

File size: 192.99 kB

Download filephs-201804-0003_S7.pdf

File size: 139.29 kB

References

  1. Ahmadiani A., Hosseiny J., Semnanian S. et al.: Antinociceptive and anti-inflammatory effects of Elaeagnus angustifolia fruit extract.-J. Ethnopharmacol. 72: 287-292, 2000. Go to original source...
  2. Alshammary S.F., Qian Y.L., Wallner S.J.: Growth response of four turfgrass species to salinity.-Agr. Water Manage. 66: 97-111, 2004. Go to original source...
  3. Amezketa E.: An integrated methodology for assessing soil salinization, a pre-condition for land desertification.-J. Arid Environ. 67: 594-606, 2006. Go to original source...
  4. Anderson L.E.: Chloroplast and cytoplasmic enzymes. 3. Pea leaf ribose-5-phosphate isomerases.-BBA-Enzymology 235: 245-249, 1971. Go to original source...
  5. Arnon D.I.: Copper enzymes in isolated chloroplasts, polyphenoloxidase in Beta vulgaris.-Plant Physiol. 24: 1-15, 1949. Go to original source...
  6. Ashburner B.M., Ball C.A., Blake J.A. et al.: Gene ontology: tool for the unification of biology.-Nat Genet. 25: 25-29, 2000. Go to original source...
  7. Bazakos C., Manioudaki M.E., Therios I. et al.: Comparative transcriptome analysis of two olive cultivars in response to NaCl-stress.-PLoS ONE 7: e42931, 2012. Go to original source...
  8. Brzezowski P., Sharifi M.N., Dent R.M. et al.: Mg chelatase in chlorophyll synthesis and retrograde signaling in Chlamydomonas reinhardtii: CHLI 2 cannot substitute for CHLI 1.-J. Exp. Bot. 67: 3925-3938, 2016. Go to original source...
  9. Chen J.B., Zhang F.R., Huang D.R. et al.: Transcriptome analysis of transcription factors in two melon (Cucumis melo L.) cultivars under salt stress.-J. Plant Physiol. 50: 150-158, 2014.
  10. Conesa A., Götz S., García-Gómez J.M. et al.: Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research.-Bioinformatics 21: 3674-6, 2005. Go to original source...
  11. Curtis P.S., Läuchli A.: The role of leaf area development and photosynthetic capacity in determining growth of kenaf under moderate salt stress.-Funct. Plant Biol. 13: 553-565., 1986. Go to original source...
  12. Deinlein U., Stephan A.B., Horie T. et al.: Plant salt-tolerance mechanisms.-Trends Plant Sci. 19: 371-379, 2014. Go to original source...
  13. Feki K., Quintero J., Khoudi H. et al.: A constitutively active form of a durum wheat Na+/H+ antiporter SOS1 confers high salt tolerance to transgenic Arabidopsis.-Plant Cell Rep. 33: 277-288, 2014. Go to original source...
  14. Flexas J., Ribas-Carbó M.., Bota J. et al.: Decreased Rubisco activity during water stress is not induced by decreased relative water content but related to conditions of low stomatal conductance and chloroplast CO2 concentration.-New Phytol. 172: 73-82, 2006. Go to original source...
  15. Flowers T.J., Colmer T.D.: Plant salt tolerance: adaptation in halophytes.-Ann. Bot.-London 115: 327-331, 2015. Go to original source...
  16. Green B.R., Pichersky E., Kloppstech K.: Chlorophyll a/bbinding proteins: an extended family.-Trends Biochem. Sci. 16: 181-186, 1991. Go to original source...
  17. Heid C.A., Stevens J., Livak K.J. et al.: Real time quantitative PCR.-Genome Res. 6: 986-994, 1996. Go to original source...
  18. Kalaitzis P., Bazakos C., Manioudaki M.: Comparative transcriptome analysis of two olive cultivars in response to NaCl stress.-PLoS ONE 7: e42931, 2012. Go to original source...
  19. Kanehisa M., Goto S., Kawashima S. et al.: The KEGG resource for deciphering the genome.-Nucleic Acids Res. 32: D277-D280, 2004. Go to original source...
  20. Kerkeb L., Donaire J.P., Rodríguez-Rosales M.P.: Plasma membrane H+-ATPase activity is involved in adaptation of tomato calli to NaCl.-Physiol. Plantarum 111: 483-490, 2001. Go to original source...
  21. Khavari-Nejad R.A., Mostofi Y.: Effects of NaCl on photosynthetic pigments, saccharides and chloroplast ultrastructure in leaves of tomato cultivars.-Photosynthetica 35: 151-154, 1998. Go to original source...
  22. Khodarahmpour Z.: Effects of NaCl salinity on maize (Zea mays L.) at germination and early seedling stage.-Afr. J. Biotechnol. 11: 298-304, 2001. Go to original source...
  23. Knowles J.R., Albery W.J.: Perfection in enzyme catalysis: the energetics of triosephosphate isomerase.-Accounts Chem. Res. 10: 105-111, 1977. Go to original source...
  24. Liu X.X., Qi M.Y., Gao Q.J. et al.: [Effects of Na2SO4 stress on net photosynthesis rate and other physiological indexes of Elaeagnus Mooraroftii.]-Xinjiang Agr. Sci. 42: 102-106, 2005. [In Chinese]
  25. Liu Z.X., Zhang H.X., Yang X.Y. et al.: Effects of Na2SO4 stress on growth and photosynthetic physiology of Elaeagnus angustifolia seedlings.-For. Res. 27: 186-194, 2014.
  26. Livak K.J., Schmittgen T.D.: Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method.-Methods 25: 402-408, 2001. Go to original source...
  27. Munns R., Tester M.: Mechanisms of salinity tolerance.-Annu. Rev. Plant Biol. 59: 651-681, 2008. Go to original source...
  28. Pagano E., Maddonni G.A.: Intra-specific competition in maize: Early established hierarchies differ in plant growth and biomass partitioning to the ear around silking.-Field Crop. Res. 101: 306-320, 2007. Go to original source...
  29. Song J., Ding X., Feng G. et al.: Nutritional and osmotic roles of nitrate in a euhalophyte and a xerophyte in saline conditions.-New Phytol. 171: 357-366, 2006. Go to original source...
  30. Sui N., Yang Z., Liu M.L., Wang B.: Identification and transcriptomic profiling of genes involved in increasing sugar content during salt stress in sweet sorghum leaves.-BMC Genomics 16: 2-18, 2015. Go to original source...
  31. Sun W., Xu X., Zhu H. et al.: Comparative transcriptomic profiling of a salt-tolerant wild tomato species and a saltsensitive tomato cultivar.-Plant Cell Physiol. 51: 997-1006, 2010. Go to original source...
  32. van Kooten O., Snel J.F.: The use of chlorophyll fluorescence nomenclature in plant stress physiology.-Photosynth. Res. 25: 147-50, 1990. Go to original source...
  33. Whitney S.M., Houtz R.L., Alonso H.: Advancing our understanding and capacity to engineer nature's CO2-sequestering enzyme, Rubisco.-Plant Physiol. 155: 27-35, 2011. Go to original source...
  34. Xiao H.D., Chen C.S., Xu Y. et al.: Cloning and expression analysis of the chloroplast fructose-1,6-bisphosphatase gene from Pyropia haitanensis.-Acta Oceanol. Sin. 33: 92-100, 2014. Go to original source...
  35. Zhang H., Li Z., Yoo J.H. et al.: Rice Chlorina-1 and Chlorina-9 encode Chl D and Chl L subunits of Mg-chelatase, a key enzyme for chlorophyll synthesis and chloroplast development.-Plant Mol. Biol. 62: 325-337, 2006. Go to original source...
  36. Zhao K., Fan H., Zhou S., Song J.: Study on the salt and drought tolerance of Suaeda salsa and Kalanchoe claigremontiana under iso-osmotic salt and water stress.-Plant Sci. 165: 837-844, 2003. Go to original source...
  37. Zhu J.K.: Plant salt tolerance.-Trends Plant Sci. 6: 66-71, 2001. Go to original source...