J Appl Biomed 16:241-246, 2018 | DOI: 10.1016/j.jab.2018.01.004

Effect of selected 8-hydroxyquinoline-2-carboxanilides on viability and sulfate metabolism of Desulfovibrio piger

Ivan Kushkevycha,*, Monika Vítězováa, Jiří Kosb, Peter Kollárc, Josef Jampílekb,*
a Masaryk University, Faculty of Science, Department of Experimental Biology, Brno, Czech Republic
b Comenius University, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Bratislava, Slovak Republic
c University of Veterinary and Pharmaceutical Sciences, Faculty of Pharmacy, Department of Human Pharmacology and Toxicology, Brno, Czech Republic

An increased number of sulfate-reducing bacteria is often isolated from faeces of patients with gastrointestinal diseases, which can be the cause of the development of bowel inflammation. Frequent use of antibiotics causes the resistance of intestinal microorganisms and ineffective treatment of these diseases. The antimicrobial activity and biological properties of the selected ring-substituted 8-hydroxyquinoline-2-carboxanilides against Desulfovibrio piger Vib-7 were studied. The addition of these compounds in the cultivation medium inhibited the bacterial growth and the process of sulfate reduction dose-dependently. A significant cytotoxic activity under the influence of ring-substituted 8-hydroxyquinoline-2-carboxanilides was determined. The strongest cytotoxic effect of the derivatives was observed for compounds 8-hydroxy-N-(3-methoxyphenyl)quinoline-2-carboxamide and 8-hydroxy-N-(3-trifluoromethylphenyl)quinoline-2-carboxamide that caused a low survival of D. piger Vib-7 in concentration 17 μM and high toxicity rates.

Keywords: Sulfate-reducing bacteria; Dissimilatory sulfate reduction; Inflammatory bowel disease; 8-hydroxyquinolines; Structure-activity relationships

Received: August 3, 2017; Revised: January 5, 2018; Accepted: January 15, 2018; Published: August 1, 2018  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Kushkevych I, Vítězová M, Kos J, Kollár P, Jampílek J. Effect of selected 8-hydroxyquinoline-2-carboxanilides on viability and sulfate metabolism of Desulfovibrio piger. J Appl Biomed. 2018;16(3):241-246. doi: 10.1016/j.jab.2018.01.004.
Download citation

References

  1. Bailey, N.T.J., 1995. Statistical Methods in Biology. Cambridge University Press. Go to original source...
  2. Barton, L.L., Hamilton, W.A., 2010. Sulphate-reducing Bacteria. Environmental and Engineered Systems. Cambridge University Press.
  3. Brenner, D.J., Krieg, N.R., Staley, J.T., Garrity, G.M., 2005. Bergey's Manual of Systematic Bacteriology, second ed. The Proteobacteria, Part C: The Alpha-, Beta- Delta-, and Epsilonproteobacteria, Vol. 2. Springer, New York. Go to original source...
  4. Cieslik, W., Musiol, R., Nycz, J.E., Jampilek, J., Vejsova, M., Wolff, M., Machura, B., Polanski, J., 2012. Contribution to investigation of antimicrobial activity of styrylquinolines. Bioorg. Med. Chem. 20, 6960-6968. Go to original source... Go to PubMed...
  5. Cline, J.D., 1969. Spectrophotometric determination of hydrogen sulfide in natural water. Limnol. Ocean 14, 454-458. Go to original source...
  6. Cummings, J.H., Macfarlane, G.T., Macfarlane, S., 2003. Intestinal bacteria and ulcerative colitis. Curr. Issues Intest. Microbiol. 4, 9-20. Go to PubMed...
  7. Gibson, G.R., Cummings, J.H., Macfarlane, G.T., 1991. Growth and activities of sulphate-reducing bacteria in gut contents of health subjects and patients with ulcerative colitis. FEMS Microbiol. Ecol. 86, 103-112. Go to original source...
  8. Gibson, G.R., Macfarlane, S., Macfarlane, G.T., 1993. Metabolic interactions involving sulphate-reducing and methanogenic bacteria in the human large intestine. FEMS Microbiol. Ecol. 12, 117-125. Go to original source...
  9. Gonec, T., Bobal, P., Sujan, J., Pesko, M., Guo, J., Kralova, K., et al., 2012. Investigating the spectrum of biological activity of substituted quinoline-2-carboxamides and their isosteres. Molecules 17, 613-644. Go to original source... Go to PubMed...
  10. Holt, J.G., Krieg, N.R., Sneath, P.H., 1994. Bergey's Manual of Determinative Bacteriology, ninth ed. Williams & Wilkins, Philadelphia.
  11. Jampilek, J., Kralova, K., Pesko, M., Kos, J., 2016. Ring-substituted 8hydroxyquinoline-2-carboxanilides as photosystem II inhibitors. Bioorg. Med. Chem. Lett. 26, 3862-3865. Go to original source... Go to PubMed...
  12. Jampilek, J., 2017. Design of antimalarial agents based on natural products. Curr. Org. Chem. 21, 1824-1846. Go to original source...
  13. Kolmert, A., Wikstrom, P., Hallberg, K.B., 2000. A fast and simple turbidimetric method for the determination of sulfate in sulfate-reducing bacterial cultures. J. Microbiol. Methods 41, 179-184. Go to original source... Go to PubMed...
  14. Kos, J., Zadrazilova, I., Nevin, E., Soral, M., Gonec, T., Kollar, P., et al., 2015. Ringsubstituted 8-hydroxyquinoline-2-carboxanilides as potential antimycobacterial agents. J. Bioorg. Med. Chem. 23 (15) 4188-4096. Go to original source... Go to PubMed...
  15. Kushkevych, I., Fafula, R.V., 2014. Dissimilatory sulfite reductase in cell-free extracts of intestinal sulfate-reducing bacteria. Stud. Biol. 8 (2), 101-112. Go to original source...
  16. Kushkevych, I., Bartos, M., Bartosova, L., 2014. Sequence analysis of the 16S rRNA gene of sulfate-reducing bacteria isolated from human intestine. Int. J. Curr. Microbiol. Appl. Sci. 3, 239-248.
  17. Kushkevych, I., Kollar, P., Suchy, P., 2015a. Activity of selected salicylamides against intestinal sulfate-reducing bacteria. Neuroendocrinol. Lett. 36, 106-113.
  18. Kushkevych, I., Fafula, R., Parak, T., Bartos, M., 2015b. Activity of Na+/K+-activated Mg2+-dependent ATP hydrolase in the cell-free extracts of the sulfate-reducing bacteria Desulfovibrio piger Vib-7 and Desulfomicrobium sp. Rod-9. Acta Vet. Brno 84 (1), 3-12. Go to original source...
  19. Kushkevych, I., Kollar, P., Ferreira, A.L., Palma, D., Duarte, A., Lopes, M.M., et al., 2016. Antimicrobial effect of salicylamide derivatives against intestinal sulfatereducing bacteria. J. Appl. Biomed. 14 (2), 125-130. Go to original source...
  20. Kushkevych, I., 2012. Sulfate-reducing bacteria of the human intestine: I. Dissimilatory sulfate reduction. Stud. Biol. 6, 149-180. Go to original source...
  21. Kushkevych, I., 2013. Identification of sulfate-reducing bacteria strains of human large intestine. Stud. Biol. 7, 115-124. Go to original source...
  22. Kushkevych, I., 2014. Etiological role of sulfate-reducing bacteria in the development of inflammatory bowel diseases and ulcerative colitis. Am. J. Inf. Dis. Microbiol. 2 (3), 63-73. Go to original source...
  23. Kushkevych, I., 2015a. Kinetic properties of pyruvate ferredoxin oxidoreductase of intestinal sulfate-reducing bacteria Desulfovibrio piger Vib-7 and Desulfomicrobium sp. Rod-9. Polish J. Microbiol. 64 (2), 107-114. Go to original source...
  24. Kushkevych, I., 2015b. Activity and kinetic properties of phosphotransacetylase from intestinal sulfate-reducing bacteria. Acta Bioch. Pol. 62 (1), 1037-1108. Go to original source... Go to PubMed...
  25. Kushkevych, I., 2016. Dissimilatory sulfate reduction in the intestinal sulfatereducing bacteria. Stud. Biol. 10 (1) 197-128. Go to original source...
  26. Loubinoux, J., Mory, F., Pereira, I.A., Le Faou, A.E., 2000. Bacteremia caused by a strain of Desulfovibrio related to the provisionally named Desulfovibrio fairfieldensis. J. Clin. Microbiol. 38, 931-934. Go to original source... Go to PubMed...
  27. Loubinoux, J., Bronowicji, J.P., Pereira, I.A., 2002a. Sulphate-reducing bacteria in human feces and their association with inflammatory diseases. FEMS Microbiol. Ecol. 40, 107-112. Go to original source... Go to PubMed...
  28. Loubinoux, J., Valente, F.M.A., Pereira, I.A.C., 2002b. Reclassification of the only species of the genus Desulfomonas Desulfomonas pigra, as Desulfovibrio piger comb. nov. Int. J. Syst. Evol. Microbiol. 52, 1305-1308. Go to original source... Go to PubMed...
  29. Mucaji, P., Atanasov, A.G., Ba ˛k, A., Kozik, V., Sieron, K., Olsen, M., et al., 2017. The forty-sixth EuroCongress on drug synthesis and analysis: snapshot. Molecules 22, 1848. Go to original source... Go to PubMed...
  30. Musiol, R., Jampilek, J., Buchta, V., Silva, L., Niedbala, H., Podeszwa, B., et al., 2006. Antifungal properties of new series of quinoline derivatives. Bioorg. Med. Chem. 14, 3592-3598. Go to original source... Go to PubMed...
  31. Musiol, R., Jampilek, J., Kralova, K., Richardson, D.R., Kalinowski, D., Podeszwa, B., et al., 2007. Investigating biological activity spectrum for novel quinoline analogues. Bioorg. Med. Chem. 15, 1280-1288. Go to original source... Go to PubMed...
  32. Musiol, R., Tabak, D., Niedbala, H., Podeszwa, B., Jampilek, J., Kralova, K., et al., 2008. Investigating biological activity spectrum for novel quinoline analogues 2: Hydroxyquinolinecarboxamides with photosynthesis-inhibiting activity. Bioorg. Med. Chem. 16, 4490-4499. Go to original source... Go to PubMed...
  33. Musiol, R., Jampilek, J., Nycz, J.E., Pesko, M., Carroll, J., Kralova, K., et al., 2010. Investigating the activity spectrum for ring-substituted 8-hydroxyquinolines. Molecules 15, 288-304. Go to original source... Go to PubMed...
  34. Pitcher, M.C., Cummings, J.H., 1996. Hydrogen sulphide: a bacterial toxin in ulcerative colitis? Gut 39, 1-4. Go to original source... Go to PubMed...
  35. Postgate, J.R., 1984. The Sulfate-Reducing Bacteria. Cambridge University Press.
  36. Ranjith, P.K., Mary, S.Y., Panicker, Y.C., Anto, P.L., Armakovic, S., Armakovic, S.J., et al., 2017. New quinolone derivative: spectroscopic characterization and reactivity study by DFT and MD approaches. J. Mol. Struct. 1135, 1-14. Go to original source...
  37. Rowan, F.E., Docherty, N.G., Coffey, J.C., O'Connell, P.R., 2009. Sulphate-reducing bacteria and hydrogen sulphide in the aetiology of ulcerative colitis. Br. J. Surg. 96, 151-158. Go to original source... Go to PubMed...