Hostname: page-component-7c8c6479df-ws8qp Total loading time: 0 Render date: 2024-03-28T00:34:30.663Z Has data issue: false hasContentIssue false

MR Angiography Compared to Conventional Selective Angiography in Acute Stroke

Published online by Cambridge University Press:  02 December 2014

Anna I. Tomanek
Affiliation:
Seaman Family MR Research Centre, Foothills Medical Centre, Calgary Health Region, Department of Clinical Neurosciences, University of Calgary, Calgary, AB Canada Seaman Family MR Research Centre, Foothills Medical Centre, Calgary Health Region, Department of Clinical Neurosciences, and Department of Radiology, University of Calgary, Calgary, AB Canada
Shelagh B. Coutts
Affiliation:
Seaman Family MR Research Centre, Foothills Medical Centre, Calgary Health Region, Department of Clinical Neurosciences, University of Calgary, Calgary, AB Canada
Andrew M. Demchuk
Affiliation:
Seaman Family MR Research Centre, Foothills Medical Centre, Calgary Health Region, Department of Clinical Neurosciences, University of Calgary, Calgary, AB Canada
Mark E. Hudon
Affiliation:
Foothills Medical Centre, Calgary Health Region, Department of Clinical Neurosciences, and Department of Radiology, University of Calgary, Calgary, AB Canada
William F. Morrish
Affiliation:
Foothills Medical Centre, Calgary Health Region, Department of Clinical Neurosciences, and Department of Radiology, University of Calgary, Calgary, AB Canada
Robert J. Sevick
Affiliation:
Foothills Medical Centre, Calgary Health Region, Department of Clinical Neurosciences, and Department of Radiology, University of Calgary, Calgary, AB Canada
Jessica E. Simon
Affiliation:
Seaman Family MR Research Centre, Foothills Medical Centre, Calgary Health Region, Department of Clinical Neurosciences, University of Calgary, Calgary, AB Canada
Richard Frayne
Affiliation:
Seaman Family MR Research Centre, Foothills Medical Centre, Calgary Health Region, Department of Clinical Neurosciences, and Department of Radiology, University of Calgary, Calgary, AB Canada
Alastair M. Buchan
Affiliation:
Seaman Family MR Research Centre, Foothills Medical Centre, Calgary Health Region, Department of Clinical Neurosciences, University of Calgary, Calgary, AB Canada
Michael D. Hill*
Affiliation:
Foothills Medical Centre, Calgary Health Region, Department of Clinical Neurosciences, Department of Community Health Sciences, and Department of Medicine, University of Calgary, Calgary, AB Canada
*
Rm 1242A, Foothills Hospital, 1403 29th Street NW, Calgary, Alberta, T2N 2T9, Canada
Rights & Permissions [Opens in a new window]

Abstract:

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
Background and purpose:

Accuracy of intracranial magnetic resonance angiography (MRA) and reliability of interpretation are not well established compared to conventional selective catheter angiography. The purpose of this study was to determine the accuracy of MRA in evaluation of intracranial vessels in acute stroke and transient ischemic attack (TIA) patients.

Methods:

Twenty-nine patients (seven females, 22 males; median age 53) with acute stroke or TIA were enrolled into the study. All patients underwent both MRA using a 3 T clinical magnet and conventional angiography within 48 hours. Median time between MRA and angiography was 263 minutes. Conventional angiography preceded MRA in 15 cases. Fourteen patients received thrombolysis during MRA or angiography. National Institutes of Health Stroke Scale scores were obtained prior to the MR exam. One neuroradiologist rated all conventional angiograms, which were used as gold standard. Five observers, blinded to conventional angiography results and all clinical information except symptom side, rated the MR angiograms. Kappa statistics were used to assess reliability; contingency tables were used to assess accuracy of non-enhanced and enhanced MRA.

Results:

Two hundred and fifty two intracranial vessels were assessed. Agreement between raters was good for both non-enhanced (k=0.50) and gadolinium-enhanced (k=0.46) images. There were a total of 26 vessels occluded by DSA. Overall, the non-enhanced MRA showed sensitivity of 84.2% (95% CI 60.4-96.6) and specificity of 84.6% (95% CI 78.6-89.4). The enhanced MRA showed sensitivity of 69.2 (95% CI 38.6-90.9) and specificity of 73.6 (95% CI 65.5-80.7).

Conclusions:

Magnetic resonance angiography is a good non-invasive screening tool for assessing intracranial vessel status in acute ischemic stroke. Angiography remains the gold standard for definitive assessment of the intracranial circulation.

Résumé

RÉSUMÉContexte et objectif:

La précision de l'angiographie par résonance magnétique intracrânienne (ARM) et la fiabilité de son interprétation sont mal établies par rapport à l'angiographie sélective conventionnelle par cathéter. L'objectif de cette étude était de déterminer la précision de l'ARM pour l'évaluation des vaisseaux intracrâniens dans l'accident vasculaire cérébral (AVC) aigu et l'accident ischémique transitoire (AIT).

Méthodes:

Vingt-neuf patients, (sept femmes et 22 hommes - âge médian 53 ans) atteints d'AVC aigu ou d'AIT ont participé à l'étude. Tous les patients ont subi une ARM utilisant un aimant 3T et une angiographie conventionnelle en dedans de 48 heures de l'événement. Le temps médian entre l'ARM et l'angiographie était de 263 minutes. L'angiographie conventionnelle a précédé l'ARM chez 15 patients. Quatorze patients ont subi une thrombolyse pendant l'ARM ou l'angiographie. Le score au National Institutes of Health Stroke Scale a été déterminé avant de faire l'ARM. Un neuroradiologiste a lu tous les angiogrammes conventionnels qui ont été utilisés comme examen de référence. Cinq observateurs qui ignoraient les résultats de l'angiographie conventionnelle ainsi que l'information clinique sauf la latéralité des symptômes, ont lu les angiogrammes par résonance magnétique. La fiabilité a été évaluée au moyen de l'analyse statistique kappa; la précision de l'ARM non rehaussée et rehaussée a été évaluée au moyen de tables de contingence.

Résultats:

Deux cent cinquante-deux vaisseaux intracrâniens ont été évalués. La concordance entre les évaluateurs était bonne tant pour les images non rehaussées (k = 0,50) que pour les images rehaussées au gadolinium (k = 0,46). À l'angiographie numérique, 26 vaisseaux étaient occlus. En tout, l'ARM avait une sensibilité de 84,2% (IC 95% : 60,4 à 96,6) et une spécificité de 84,6% (IC 95% : 78,6 à 89,4). L'ARM rehaussée avait une sensibilité de 69,2% (IC 95% : 38,6 à 90,9) et une spécificité de 73,6% (IC 95% : 65,5 à 80,7). Conclusions: L'angiographie par résonance magnétique est un bon outil de dépistage non effractif pour évaluer l'état des vaisseaux intracrâniens dans l'AVC aigu. L'angiographie demeure l'examen de référence pour l'évaluation de la circulation intracrânienne.

Conclusions:

L'angiographie par résonance magnétique est un bon outil de dépistage non effractif pour évaluer l'état des vaisseaux intracrâniens dans l'AVC aigu. L'angiographie demeure l'examen de référence pour l'évaluation de la circulation intracrânienne.

Type
Original Article
Copyright
Copyright © The Canadian Journal of Neurological 2006

References

1. Heiserman, JE, Drayer, BP, Keller, PJ, Fram, EK. Intracranial vascular stenosis and occlusion: evaluation with three-dimentional time-of-flight MR angiography. Radiology. 1992;185:667–73.Google Scholar
2. Korogi, Y, Takahashi, M, Mabuchi, N, et al. Intracranial vascular stenosis and occlusion: diagnostic accuracy of three-dimentional, fourier transform, time-of-flight MR angiography. Radiology. 1994;193:187–93.Google Scholar
3. Stock, KW, Radue, EW, Jacob, AL, Bao, XS, Steinbrich, W. Intracranial Arteries: prospective blinded comparative study of MR angiography and DSA in 50 patients. Radiology. 1995;195:451–56.Google Scholar
4. Parker, DL, Goodrich, KC, Alexander, AL, Buswell, HR, Blatter, DD, Tsuruda, JS. Optimized visualization of vessels in contrast enhanced intracranial MR angiography. MRM. 1998;40:873–82.Google Scholar
5. Yang, JJ, Hill, MD, Morrish, WF, Hudon, ME, Barber, PA, Demchuk, AM, et al. Comparison of pre- and postcontrast 3D Time-of-flight MR angiography for the evaluation of distal intracranial branch occlusions in acute ischemic stroke. Am J Neuroradiol. 2002;23:557–67.Google Scholar
6. Landis, JR, Koch, GG. The measurement of observer agreement for categorical data. Biometrics. 1977;33:159–74.Google Scholar
7. Korogi, Y, Takahashi, M, Nakagawa, T, Mabuchi, N, Watabe, , et al. Intracranial vascular stenosis and occlusion: MR angiographic findings. Am J Neuroradiol. 1997;18:135–43.Google Scholar
8. Robinson, RO, Blatter, DD, Parker, DL, Barney, WW, Perry, DM, Goodrich, KC. Reduction of slab boundary artifact with multiple overlapping thin slab acquisition in MR angiography of the cervical carotid artery. J Magn Reson Imaging. 1994;4:529–35.Google Scholar
9. Willig, DS, Turski, PA, Frayne, R, Graves, VB, Korosec, FR, et al. Contrast-enhanced 3D DSA of the carotid artery bifurcation: preliminary study of comparison with unenhanced 2D and 3D time-of-flight MR angiography. Radiology. 1998;208(2):447–51.CrossRefGoogle ScholarPubMed
10. Yano, T, Kodama, T, Suzuki, Y, Watanabe, K. Gadolinium-enhanced 3D time of flight MR angiography. Acta Radiol. 1997;38:4754.Google Scholar
11. Wardlaw, JM, Lewis, SC, Collie, DA, Sellar, R. Interobserver variability of magnetic resonance angiography in the diagnosis of carotid stenosis – effect of observer experience. Neuroradiology. 2002;44(2):126–32.Google Scholar