Photosynthetica 2001, 39(4):515-520 | DOI: 10.1023/A:1015643710177

Photosynthetic Response of Barley Plants to Soil Flooding

R.Y. Yordanova, L.P. Popova

72 to 120 h of soil flooding of barley plants (Hordeum vulgare L. cv. Alfa) led to a noticeable decrease in the rates of CO2 assimilation and transpiration, and in chlorophyll and dry mass contents. Stomatal conductance decreased following flooding without appreciable changes in the values of intercellular CO2 concentrations. A drop in the activity of ribulose-1,5-bisphosphate carboxylase (EC 4.1.1.39) and of the photorespiratory enzymes phosphoglycollate phosphatase (EC 3.1.3.18) and glycollate oxidase (EC 1.1.3.1) was observed, while the activity of phosphoenolpyruvate carboxylase (EC 4.1.1.31) increased in all flooded plants. Flooding of barley plants caused an increase in proline content and in leaf acidity.

Additional key words: carboxylases; Hordeum vulgare; leaf acidity; net photosynthetic rate; photorespiratory enzymes; proline; stress

Published: December 1, 2001  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Yordanova, R.Y., & Popova, L.P. (2001). Photosynthetic Response of Barley Plants to Soil Flooding. Photosynthetica39(4), 515-520. doi: 10.1023/A:1015643710177
Download citation

References

  1. Anderson, P.H., Pezeshki, S.R.: The effects of intermittent flooding on seedlings of three forest species.-Photosynthetica 37: 543-552, 1999. Go to original source...
  2. Arnon, D.I.: Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris.-Plant Physiol. 24: 1-15, 1949. Go to original source...
  3. Bates, L.S., Waldren, R.P., Teare, I.E.: Rapid determination of free proline for water stress studies.-Plant Soil 39: 205-207, 1973. Go to original source...
  4. Boiadjiev, T.: [Soil map of Bulgaria, revised Legend, FAO, UNESCO, ISRIC.]-Soil Sci. Agrochem. Ecol. 4-6: 52-56, 1994. [In Bulg.]
  5. Bradford, M.M.: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding.-Anal. Biochem. 72: 248-254, 1976. Go to original source...
  6. Bradford, K.J.: Effects of soil flooding on leaf gas exchange of tomato plants.-Plant Physiol. 73: 475-479, 1983. Go to original source...
  7. Caemmerer, S. von, Farquhar, G.D.: Some relationships between the biochemistry of photosynthesis and the gas exchange of leaves.-Planta 153: 376-387, 1981. Go to original source...
  8. Coutts, M.P.: Effects of waterlogging on water relations of actively growing and dormant Sitka spruce seedlings.-Ann. Bot. 47: 747-753, 1981. Go to original source...
  9. Crawford, R.M.M., Braendle, R.: Oxygen deprivation stress in a changing environment.-J. exp. Bot. 47: 145-149, 1996. Go to original source...
  10. Else, M.A., Hall, K.C., Arnold, G.M., Davies, W.J., Jackson, M.B.: Export of abscisic acid, 1-aminocyclopropane-l-carboxylic acid, phosphate, and nitrate from roots to shoots of flooded tomato plants.-Plant Physiol. 107: 377-384, 1995. Go to original source...
  11. Farquhar, G.D., Caemmerer, S. von: Modelling of photosynthetic response to environmental conditions.-In: Lange, O.L., Nobel, P.S., Osmond, C.B., Ziegler, H. (ed.): Physiological Plant Physiology II. Pp. 549-587. Springer-Verlag, Berlin-Heidelberg-New York 1982. Go to original source...
  12. Flügge, U.I., Freisl, M., Heldt, H.W.: The mechanism of the control of carbon fixation by the pH in the chloroplast stroma. Studies with acid mediated proton transfer across the envelope.-Planta 149: 48-51, 1980. Go to original source...
  13. Jackson, M.B., Hall, K.C.: Early stomatal closure in waterlogged pea plants is mediated by abscisic acid in the absence of foliar water deficits.-Plant Cell Environ. 10: 121-130, 1987. Go to original source...
  14. Kicheva, M.I., Tsonev, T.D., Popova, L.P.: Stomatal and nonstomatal limitations of photosynthesis in two wheat cultivars subjected to water stress.-Photosynthetica 30: 107-116, 1994.
  15. Knacker, T., Ruzicka, J., Schaub, H.: Effect of low oxygen concentration on the structure and function of chloroplasts of the C4-plant Amaranthus paniculatus L.-Photosynthetica 18: 502-511, 1984. Go to original source...
  16. Kondrashova, M.N., Lesogorova, M.N., Shnoll, C.E.: [Method for determination of inorganic phosphorus by ultraviolet absorbance by molybdenum complexes.]-Biokhimya 30: 567-572, 1965. [In Russ.]
  17. Kozlowski, T.T., Pallardy, S.G.: Effects of flooding on water, carbohydrate and mineral relations.-In: Kozlowski, T.T. (ed.): Flooding and Plant Growth. Pp. 165-193. Academic Press, Orlando-San Diego-San Francisco-New York-London-Toronto-Sydney-Tokyo-Sao Paulo 1984. Go to original source...
  18. Ladygin, V.G.: [Effect of root zone hypoxia and anoxia on the functional activity and chloroplast ultrastructure in leaves of Pisum sativum and Glycine max.]-Fiziol. Rast. 46: 246-258, 1999. [In Russ.]
  19. Moog, P.R., Brüggemann, W.: Influence of root oxygen deficiency on photosynthesis and saccharide contents of Carex species.-Photosynthetica 28: 523-529, 1993.
  20. Morgan, J.A.: The effects of N nutrition on the water relations and gas exchange characteristics of wheat (Triticum aestivum L.).-Plant Physiol. 80: 52-58, 1986. Go to original source...
  21. Perata, P., Alpi, A.: Plant responses to anaerobiosis.-Plant Sci. 93: 1-17, 1993. Go to original source...
  22. Popova, L.P., Tsonev, T.D., Lazova, G.N., Stoinova, Z.G.: Drought-and ABA-induced changes in photosynthesis of barley plants.-Physiol. Plant. 96: 623-629, 1996. Go to original source...
  23. Popova, L.P., Tsonev, T.D., Vaklinova, S.G.: A possible role for abscisic acid in regulation of photosynthetic and photorespiratory carbon metabolism in barley leaves.-Plant Physiol. 83: 820-824, 1987. Go to original source...
  24. Randall, D.D., Tolbert, N.E., Cremel, D.: 3-phosphoglycerate phosphatase in plants. II. Distribution, physiological considerations, and comparison with P-glycolate phosphatase.-Plant Physiol. 48: 480-487, 1971. Go to original source...
  25. Ricard, B., Couee, I., Raymond, P., Saglio, P.H., Saint-Ges, V., Pradet, A.: Plant metabolism under hypoxia and anoxia.-Plant Physiol. Biochem. 32: 1-10, 1994.
  26. Roberts, J.K.M., Andrade, F.H., Anderson, I.C.: Further evidence that cytoplasmic acidosis is a determinant of flooding intolerance in plants.-Plant Physiol. 77: 492-494, 1985. Go to original source...
  27. Roberts, J.K.M., Callis, J., Jardetzky, O., Walbot, V., Freeling, M.: Cytoplasmic acidosis as a determinant of flooding intolerance in plants.-Proc. nat. Acad. Sci. USA 81: 6029-6033, 1984. Go to original source...
  28. Salcheva, G.S., Popova, L.P.: Intensity of photosynthesis and activity of carboxylating enzymes in wheat and rye grown on waterlogged soil.-Dokl. bolg. Akad. Nauk 35: 973-976, 1982.
  29. Summers, J.E., George-Ratcliffe, R., Jackson, M.B.: Anoxia tolerance in the aquatic monocot Potamogeton pectinatus: absence of oxygen stimulates elongation in association with an unusually large Pasteur effect.-J. exp. Bot. 51: 1413-1422, 2000. Go to original source...
  30. Titarenko, T.Y.: Test parameters of revealing the degree of fruit plants tolerance to the root hypoxia caused flooding of soil.-Plant Physiol. Biochem. 38(Suppl.): s115, 2000.
  31. Tsonev, T.D., Lazova, G.N., Stoinova, Z.G., Popova, L.P.: A possible role for jasmonic acid in adaptation of barley seedlings to salinity stress.-J. Plant Growth Regul. 17: 153-159, 1998. Go to original source...
  32. Vartapetian, B.B., Jackson, M.B.: Plant adaptation to anaerobic stress.-Ann. Bot. 79: 3-20, 1997. Go to original source...
  33. Zude-Sasse, M., Ludders, P.: Short-and long-term responses of mango trees to root zone anoxia.-Plant Physiol. Biochem. 38(Suppl.): s126, 2000.