Skip to main content
Article

Developmental Changes in the EEG Rhythms of Children and Young Adults

Analyzed by Means of Correlational, Brain Topography and Principal Component Analysis

Published Online:https://doi.org/10.1027/0269-8803/a000052

This study analyzed the developmental trends of brain rhythms in a group of children and a group of young adults. Principal component analysis (PCA), ANOVA, as well as correlational and topographical analyses were applied to the power spectral density of spontaneous electroencephalography (EEG). Absolute and relative power data were analyzed. The PCA analysis allowed to define three sources of variability related to the classical EEG rhythms. The absolute power results showed that children have higher spectral power than young adults in all frequency bands. Relative power demonstrated that children have more spectral power in the lower frequency bands (delta and theta) while young adults have more spectral power in the higher frequency bands (alpha and beta). Scalp topography analysis showed similar distributions for the four EEG bands in both groups, although delta and theta differed slightly between age groups. Correlational and PCA analysis showed an inverse relationship between delta and alpha power during development. Posterior regions and lower frequency rhythms seem to mature earlier than other regions and frequencies.

References

  • Anokhin, A. P. , Birbaumer, N. , Lutzenberger, W. , Nikolaev, A. , Vogel, F. (1996). Age increases brain complexity. Electroencephalography and Clinical Neurophysiology, 99, 63–68. First citation in articleCrossrefGoogle Scholar

  • Becerra, J. , Fernández, T. , Harmony, T. , Caballero, M. I. , García, F. , Fernández-Bouzas, A. , …, Prado-Alcalá, R. A. (2006). Follow-up study of learning-disabled children treated with neurofeedback or placebo. Clinical EEG and Neuroscience, 37, 198–203. First citation in articleCrossrefGoogle Scholar

  • Benninger, C. , Matthis, P. , Scheffner, D. (1984). EEG development of healthy boys and girls – results of a longitudinal study. Electroencephalography and Clinical Neurophysiology, 57, 1–12. First citation in articleCrossrefGoogle Scholar

  • Bender, S. , Weisbrod, M. , Bornfleth, H. , Resch, F. , Oelkers-Ax, R. (2005). How do children prepare to react? Imaging maturation of motor preparation and stimulus anticipation by late contingent negative variation. NeuroImage, 27, 737–752. First citation in articleCrossrefGoogle Scholar

  • Carretié, L. A. (2001). Psicofisiología [Psychophysiology]. Madrid: Pirámide. First citation in articleGoogle Scholar

  • Chugani, H. T. (1998). A critical period of brain development: Studies of cerebral glucose utilization with PET. Preventive Medicine, 27, 184–188. First citation in articleCrossrefGoogle Scholar

  • Clarke, A. R. , Barry, R. J. , McCarthy, R. , Selikowitz, M. (2001). Age and sex effects in the EEG: Development of the normal child. Clinical Neurophysiology, 112, 806–814. First citation in articleCrossrefGoogle Scholar

  • Clarke, A. R. , Barry, R. J. , McCarthy, R. , Selikowitz, M. (2002). EEG analysis of children with Attention-Deficit/Hyperactivity disorder and comorbid reading disabilities. Journal of Learning Disabilities, 35, 276–285. First citation in articleCrossrefGoogle Scholar

  • Crone, E. (2009). Executive functions in adolescence: Inferences from brain and behaviour. Developmental Science Review, 12, 825–830. First citation in articleCrossrefGoogle Scholar

  • Defayolle, M. , Dinand, J. P. (1974). Application de l’analyse factorielle a l’etude de la structure de l’EEG [An application of factor analysis to the study of EEG structure]. Electroencephalography and Clinical Neurophysiology, 36, 319–322. First citation in articleCrossrefGoogle Scholar

  • Durston, S. , Davidson, M. , Tottenham, N. , Galvan, A. , Spicer, J. , Fossella, J. , Casey, B. (2006). A shift from diffuse to focal cortical activity with development. Developmental Science, 9, 1–20. First citation in articleCrossrefGoogle Scholar

  • Elmgren, J. (1973). Un análisis factorial del EEG humano [Factorial analysis of the human EEG]. Revista de psicología general y aplicada: Revista de la Federación Española de Asociaciones de Psicología, 28, 255–272. First citation in articleGoogle Scholar

  • Flores, A. , Digiacomo, M. , Meneres, S. , Trigo, E. , Gómez, C. M. (2009). Development of preparatory activity indexed by the contingent negative variation in children. Brain and Cognition, 71, 129–140. First citation in articleCrossrefGoogle Scholar

  • Flores, A. , Meneres, S. , Gómez, C. M. (2010). Evaluation of spatial validity-invalidity effects by the P300 component in children and young adults. Brain Research Bulletin, 81, 525–533. First citation in articleCrossrefGoogle Scholar

  • Gasser, T. , Verleger, R. , Bacher, P. , Sroka, L. (1988). Development of the EEG of school-age children and adolescents. I. Analysis of band power. Electroencephalography and Clinical Neurophysiology, 69, 91–99. First citation in articleCrossrefGoogle Scholar

  • Giedd, J. N. (2004). Structural magnetic resonance imaging of the adolescent brain. Annals of the New York Academy of Sciences, 1021, 77–85. First citation in articleCrossrefGoogle Scholar

  • Gómez, C. M. , Vaquero, E. , López-Mendoza, D. , González-Rosa, J. , Vázquez-Marrufo, M. (2004). Reduction of EEG power during expectancy periods in humans. Acta Neurobiologiae Experimentalis, 64, 143–151. First citation in articleGoogle Scholar

  • Gómez, C. M. , Marco-Pallarés, J. , Grau, C. (2006). Location of brain rhythms and their modulation by preparatory attention estimated by current density. Brain Research, 1107, 151–160. First citation in articleCrossrefGoogle Scholar

  • Gorsuch, R. L. (1983). Factor analysis. Mahwah, NJ: Erlbaum. First citation in articleGoogle Scholar

  • Haan, M. (2007). Infant EEG and event-related potentials. New York, NY: Psychology Press. First citation in articleGoogle Scholar

  • Harmony, T. , Marosi, E. , Díaz de León, A. , Becker, J. , Fernández, T. (1990). Effect of sex, psychosocial disadvantages and biological risk factors on EEG maturation. Electroencephalography and Clinical Neurophysiology, 75, 482–491. First citation in articleCrossrefGoogle Scholar

  • Hudspeth, W. J. , Pribram, K. H. (1990). Stages of brain and cognitive maturation. Journal of Educational Psychology, 82, 881–884. First citation in articleCrossrefGoogle Scholar

  • Hudspeth, W. J. , Pribram, K. H. (1992). Psychophysiological indices of cerebral maturation. International Journal of Psychophysiology, 12, 19–29. First citation in articleCrossrefGoogle Scholar

  • Huttenlocher, P. R. (1979). Synaptic density in human frontal cortex – developmental changes and effects of aging. Brain Research, 163, 195–205. First citation in articleCrossrefGoogle Scholar

  • John, E. R. (1977). Neurometrics – functional neuroscience, Vol. 2, Mahwah, NJ: Erlbaum. First citation in articleGoogle Scholar

  • John, E. R. , Ahn, H. , Prichep, L. , Trepetin, M. , Brown, D. , Kaye, H. (1980). Developmental equations for the electroencephalogram. Science, 210, 1255–1258. First citation in articleCrossrefGoogle Scholar

  • Keshavan, M. S. , Diwadkar, V. A. , DeBellis, M. , Dick, E. , Kotwal, R. , Rosenberg, D. R. , …, Pettegrew, J. W. (2002). Development of the corpus callosum in childhood, adolescence and early adulthood. Life Sciences, 70, 1909–1922. First citation in articleCrossrefGoogle Scholar

  • Lagerlund, T. D. , Sharbrough, F. W. , Busacker, N. E. (1997). Spatial filtering of multichannel electroencephalographic recordings through principal component analysis by singular value decomposition. Journal of Clinical Neurophysiology, 14, 73–82. First citation in articleCrossrefGoogle Scholar

  • Lazarev, V. (1998). On the intercorrelation of some frequency and amplitude parameters of the human EEG and its functional significance. Communication I. Multidimensional neurodynamic organization of functional states of the brain during intellectual, perceptive and motor activity in normal subjects. International Journal of Psychophysiology, 28, 77–98. First citation in articleCrossrefGoogle Scholar

  • Matousek, M. , Petersén, I. (1973). Frequency analysis of the EEG in normal children and adolescents. In P. Kellaway, I. Petersén (Eds.), Automation of clinical electroencephalography (pp. 75–102). New York, NY: Raven Press. First citation in articleGoogle Scholar

  • Matthis, P. , Scheffner, D. , Benninger, C. , Lipinski, C. , Stolzis, L. (1980). Changes in the background activity of the electroencephalogram according to age. Electroencephalography and Clinical Neurophysiology, 49, 626–635. First citation in articleCrossrefGoogle Scholar

  • Niedermeyer, E. , Lopes da Silva, F. (1999). Electroencephalography: Basic principles, clinical applications, and related fields. Baltimore, MD: Williams & Wilkins. First citation in articleGoogle Scholar

  • Otero, G. (2001). Ontogenia y maduración del electroencefalograma [Ontogenesis and maturation of the electroencephalogram]. In V. Romero, E. Díaz (Eds.) Texto de Neurociencias Cognitivas (pp. 371–392). México: Manual Moderno. First citation in articleGoogle Scholar

  • Paus, T. , Collins, D. L. , Evans, A. C. , Leonard, G. , Pike, B. , Zijdenbos, A. (2000). Maturation of white matter in the human brain: A review of magnetic resonance studies. Brain Research Bulletin, 54, 255–266. First citation in articleCrossrefGoogle Scholar

  • Pierce, T. , Watson, T. , King, J. , Kelly, S. , Pribram, K. (2003). Age differences in factor analysis of EEG. Brain Topography, 16, 19–27. First citation in articleCrossrefGoogle Scholar

  • Puligheddu, M. , Munck, J. C. , Stam, C. J. , Verbunt, J. , Jongh, A. , Van Dijk, B. , Marrosu, F. (2005). Age distribution of MEG spontaneous theta activity in healthy subjects. Brain Topography, 17, 165–175. First citation in articleCrossrefGoogle Scholar

  • Salek-Haddadi, A. , Friston, K. J. , Lemieux, L. , Fish, D. R. (2003). Studying spontaneous EEG activity with fMRI. Brain Research Reviews, 43, 110–133. First citation in articleCrossrefGoogle Scholar

  • Shaw, P. , Greenstein, D. , Lerch, J. , Clasen, L. , Lenroot, R. , Gogtay, N. , …, Giedd, J. (2006). Intellectual ability and cortical development in children and adolescents. Nature, 440, 676–679. First citation in articleCrossrefGoogle Scholar

  • Shaw, P. , Kabani, N. J. , Lerch, J. P. , Eckstrand, K. , Lenroot, R. , Gogtay, N. , …, Wise, S. P. (2008). Neurodevelopmental trajectories of the human cerebral cortex. The Journal of Neuroscience, 28, 3586–3594. First citation in articleCrossrefGoogle Scholar

  • Skrandies, W. (1993). EEG/EP: New techniques. Brain Topography, 5, 347–350. First citation in articleCrossrefGoogle Scholar

  • Somsen, R. J. M. , Klooster, B. J. , Van der Molen, M. W. , Van Leeuwen, H. M. P. , Licht, R. (1997). Growth spurts in brain maturation during middle childhood as indexed by EEG power spectra. Biological Psychology, 44, 187–209. First citation in articleCrossrefGoogle Scholar

  • Sowell, E. R. , Thompson, P. M. , Tessner, K. D. , Toga, A. W. (2001). Mapping continued brain growth and gray matter density reduction in dorsal frontal cortex: Inverse relationships during postadolescent brain maturation. The Journal of Neuroscience, 21, 8819–8829. First citation in articleGoogle Scholar

  • Sowell, E. R. , Trauner, D. A. , Gamst, A. , Jernigan, T. L. (2002). Development of cortical and subcortical brain structures in childhood and adolescence: A structural MRI study. Developmental Medicine & Child Neurology, 44, 4–16. First citation in articleCrossrefGoogle Scholar

  • Srinivasan, R. (1999). Spatial structure of the human alpha rhythm: global correlation in adults and local correlation in children. Clinical Neurophysiology, 110, 1351–1362. First citation in articleCrossrefGoogle Scholar

  • Tenke, C. E. , Kayser, J. (2005). Reference-free quantification of EEG spectra: Combining current source density (CSD) and frequency principal components analysis (fPCA). Clinical Neurophysiology, 116, 2826–2846. First citation in articleCrossrefGoogle Scholar

  • Thatcher, R. W. (1991). Maturation of the human frontal lobes: Physiological evidence for staging. Developmental Neuropsychology, 7, 391–419. First citation in articleCrossrefGoogle Scholar

  • Whitford, T. J. , Rennie, C. J. , Grieve, S. M. , Clark, C. R. , Gordon, E. , Williams, L. M. (2007). Brain maturation in adolescence: Concurrent changes in neuroanatomy and neurophysiology. Human Brain Mapping, 28, 228–237. First citation in articleCrossrefGoogle Scholar

  • Yordanova, J. , Kolev, V. (1997). Alpha response system in children: Changes with age. International Journal of Psychophysiology, 26, 411–430. First citation in articleCrossrefGoogle Scholar