Skip to main content
Article

Time Course of Error-Potentiated Startle and its Relationship to Error-Related Brain Activity

Published Online:https://doi.org/10.1027/0269-8803/a000093

Errors are aversive, motivationally-salient events which prime defensive action. This is reflected in a potentiated startle reflex after the commission of an error. The current study replicates and extends previous work examining the time course of error-potentiated startle as a function of startle lag (i.e., 300 ms or 800 ms following correct and error responses). In addition, the relationship between error-potentiated startle and error-related brain activity in both the temporal (error-related negativity, ERN/Ne) and spectral (error-related theta and delta power) domains was investigated. Event-related potentials (ERPs) were recorded from 32 healthy undergraduates while they performed an arrowhead version of a flanker task. Complex Morlet wavelets were applied to compute oscillatory power in the delta- and theta-band range. Consistent with our previous report, startle was larger following errors. Furthermore, this effect was evident at both early and late startle probe times. Increased delta and theta power after an error was associated with larger error-potentiated startle. An association between ERN amplitude and error-potentiated startle was only observed in a subgroup of individuals with relatively large ERN/Ne amplitude. Among these individuals, ERN/Ne magnitude was also related to multiple indices of task performance. This study further supports the notion that errors are aversive events that prime defensive motivation, and that error-potentiated startle is evident beyond the immediate commission of an error and can be predicted from error-related brain activity.

References

  • Beste, C. , Domschke, K. , Kolev, V. , Yordanova, J. , Baffa, A. , Falkenstein, M. , Konrad, C. (2010). Functional 5-HT1a receptor polymorphism selectively modulates error-specific subprocesses of performance monitoring. Human Brain Mapping, 31, 621–630. doi: 10.1002/hbm.20892 First citation in articleGoogle Scholar

  • Beste, C. , Kolev, V. , Yordanova, J. , Domschke, K. , Falkenstein, M. , Baune, B. T. , Konrad, C. (2010). The role of the BDNF Val66Met polymorphism for the synchronization of error-specific neural networks. Journal of Neuroscience, 30, 10727–10733. doi: 10.1523/JNEUROSCI.2493-10.2010 First citation in articleCrossrefGoogle Scholar

  • Botvinick, M. M. , Braver, T. S. , Barch, D. M. , Carter, C. S. , Cohen, J. D. (2001). Conflict monitoring and cognitive control. Psychological Review, 108, 624–652. First citation in articleCrossrefGoogle Scholar

  • Bradley, M. M. , Lang, P. J. , Cuthbert, B. N. (1993). Emotion, novelty, and the startle reflex: Habituation in humans. Behavioral Neuroscience, 107, 970–980. First citation in articleCrossrefGoogle Scholar

  • Bradley, M. M. , Moulder, B. , Lang, P. J. (2005). When good things go bad: The reflex physiology of defense. Psychological Science, 16, 468–473. First citation in articleGoogle Scholar

  • Bradley, M. M. , Codispoti, M. , Lang, P. J. (2006). A multi-process account of startle modulation during affective perception. Psychophysiology, 43, 486–497. First citation in articleCrossrefGoogle Scholar

  • Cavanagh, J. F. , Cohen, M. X. , Allen, J. J. (2009). Prelude to and resolution of an error: EEG phase synchrony reveals cognitive control dynamics during action monitoring. Journal of Neuroscience, 29, 98–105. First citation in articleCrossrefGoogle Scholar

  • Chiu, P. H. , Deldin, P. J. (2007). Neural evidence for enhanced error detection in major depressive disorder. American Journal of Psychiatry, 164, 608–616. First citation in articleCrossrefGoogle Scholar

  • Critchley, H. D. , Tang, J. , Glaser, D. , Butterworth, B. , Dolan, R. J. (2005). Anterior cingulate activity during error and autonomic response. Neuroimage, 27, 885–895. First citation in articleCrossrefGoogle Scholar

  • Debener, S. , Ullsperger, M. , Siegel, M. , Fiehler, K. , von Cramon, D. Y. , Engel, A. K. (2005). Trial-by-trial coupling of concurrent electroencephalogram and functional magnetic resonance imaging identifies the dynamics of performance monitoring. Journal of Neuroscience, 25, 11730–11737. First citation in articleCrossrefGoogle Scholar

  • Dehaene, S. , Posner, M. I. , Tucker, D. M. (1994). Localization of a neural system for error detection and compensation. Psychological Science, 5, 303–305. First citation in articleCrossrefGoogle Scholar

  • Endrass, T. , Klawohn, J. , Schuster, F. , Kathmann, N. (2008). Overactive performance monitoring in obsessive-compulsive disorder: ERP evidence from correct and erroneous reactions. Neuropsychologia, 46, 1877–1887. First citation in articleCrossrefGoogle Scholar

  • Endrass, T. , Schuermann, B. , Kaufmann, C. , Spielberg, R. , Kniesche, R. , Kathmann, N. (2010). Performance monitoring and error significance in patients with obsessive-compulsive disorder. Biological Psychology, 84, 257–263. First citation in articleCrossrefGoogle Scholar

  • Falkenstein, M. , Hohnsbein, J. , Hoormann, J. , Blanke, L. (1991). Effects of crossmodal divided attention on late ERP components. II. Error processing in choice reaction tasks. Electroencephalography and Clinical Neurophysiology, 78, 447–455. First citation in articleCrossrefGoogle Scholar

  • Falkenstein, M. , Hoormann, J. , Christ, S. , Hohnsbein, J. (2000). ERP components on reaction errors and their functional significance: A tutorial. Biological Psychology, 51, 87–107. First citation in articleCrossrefGoogle Scholar

  • Gehring, W. , Goss, B. , Coles, M. , Meyer, D. , Donchin, E. (1993). A neural system for error detection and compensation. Psychological Science, 4, 385–390. First citation in articleCrossrefGoogle Scholar

  • Gehring, W. , Himle, J. , Nisenson, L. (2000). Action-monitoring dysfunction in obsessive-compulsive disorder. Psychological Science. 1–6. First citation in articleGoogle Scholar

  • Grillon, C. (2002). Startle reactivity and anxiety disorders: Aversive conditioning, context, and neurobiology. Biological Psychiatry, 52, 958–975. First citation in articleCrossrefGoogle Scholar

  • Grillon, C. , Ameli, R. , Merikangas, K. , Woods, S. W. , Davis, M. (1993). Measuring the time course of anticipatory anxiety using the fear-potentiated startle reflex. Psychophysiology, 30, 340–346. First citation in articleCrossrefGoogle Scholar

  • Gratton, G. , Coles, M. G. , Donchin, E. (1983). A new method for off-line removal of ocular artifact. Electroencephalography and Clinical Neurophysiology, 55, 468–484. First citation in articleCrossrefGoogle Scholar

  • Hajcak, G. , Foti, D. (2008). Errors are aversive: Defensive motivation and the error-related negativity. Psychological Science, 19, 103. First citation in articleCrossrefGoogle Scholar

  • Hajcak, G. , Franklin, M. E. , Foa, E. B. , Simons, R. F. (2008). Increased error-related brain activity in pediatric obsessive-compulsive disorder before and after treatment. American Journal of Psychiatry, 165, 116–123. First citation in articleCrossrefGoogle Scholar

  • Hajcak, G. , McDonald, N. , Simons, R. (2003a). Anxiety and error-related brain activity. Biological Psychology, 64, 77–90. First citation in articleCrossrefGoogle Scholar

  • Hajcak, G. , McDonald, N. , Simons, R. (2003b). To err is autonomic: error-related brain potentials, ANS activity, and post-error compensatory behavior. Psychophysiology, 40, 895–903. First citation in articleCrossrefGoogle Scholar

  • Hajcak, G. , McDonald, N. , Simons, R. F. (2004). Error-related psychophysiology and negative affect. Brain and Cognition, 56, 189–197. First citation in articleCrossrefGoogle Scholar

  • Hajcak, G. , Moser, J. S. , Yeung, N. , Simons, R. F. (2005). On the ERN and the significance of errors. Psychophysiology, 42, 151–160. First citation in articleCrossrefGoogle Scholar

  • Hajcak, G. , Simons, R. (2002). Error-related brain activity in obsessive-compulsive undergraduates. Psychiatry Research, 110, 63–72. First citation in articleCrossrefGoogle Scholar

  • Holroyd, C. B. , Coles, M. G. (2002). The neural basis of human error processing: Reinforcement learning, dopamine, and the error-related negativity. Psychological Review, 109, 679–709. First citation in articleCrossrefGoogle Scholar

  • Johannes, S. , Wieringa, B. , Nager, W. , Rada, D. , Dengler, R. , Emrich, H. , Dietrich, D. E. (2001). Discrepant target detection and action monitoring in obsessive–compulsive disorder. Psychiatry Research: Neuroimaging, 108, 101–110. First citation in articleCrossrefGoogle Scholar

  • Kolev, V. , Beste, C. , Falkenstein, M. , Yordanova, J. (2009). Error-Related Oscillations Effects of Aging on Neural Systems for Behavioral Monitoring. Journal of Psychophysiology, 23, 216–223. doi: 10.1027/0269-8803.23.4.216 First citation in articleLinkGoogle Scholar

  • Kolev, V. , Falkenstein, M. , Yordanova, J. (2005). Aging and error processing – time-frequency analysis of error-related potentials. Journal of Psychophysiology, 19, 289–297. doi: 10.1027/0269-8803.19.4.289 First citation in articleLinkGoogle Scholar

  • Kumari, V. , Kaviani, H. , Raven, P. W. , Gray, J. A. , Checkley, S. A. (2001). Enhanced startle reactions to acoustic stimuli in patients with obsessive-compulsive disorder. American Journal of Psychiatry, 158, 134–136. First citation in articleCrossrefGoogle Scholar

  • Lachaux, J. P. , Rodriguez, E. , Martinerie, J. , Varela, F. J. (1999). Measuring phase synchrony in brain signals. Human Brain Mapping, 8, 194–208. First citation in articleCrossrefGoogle Scholar

  • Lang, P. J. , Davis, M. , Öhman, A. (2000). Fear and anxiety: Animal models and human cognitive psychophysiology. Journal of Affective Disorders, 61, 137–159. First citation in articleCrossrefGoogle Scholar

  • Luu, P. , Collins, P. , Tucker, D. M. (2000). Mood, personality, and self-monitoring: Negative affect and emotionality in relation to frontal lobe mechanisms of error monitoring. Journal of Experimental Psychology: General, 129, 43–60. First citation in articleCrossrefGoogle Scholar

  • Luu, P. , Tucker, D. M. (2001). Regulating action: Alternating activation of midline frontal and motor cortical networks. Clinical Neurophysiology, 112, 1295–1306. First citation in articleCrossrefGoogle Scholar

  • Luu, P. , Tucker, D. M. , Makeig, S. (2004). Frontal midline theta and the error-related negativity: Neurophysiological mechanisms of action regulation. Clinical Neurophysiology, 115, 1821–1835. First citation in articleCrossrefGoogle Scholar

  • Morgan, C. A. III , Grillon, C. , Southwick, S. M. , Davis, M. , Charney, D. S. (1995). Fear-potentiated startle in posttraumatic stress disorder. Biological Psychiatry, 38, 378–385. First citation in articleCrossrefGoogle Scholar

  • Olvet, D. , Hajcak, G. (2008). The error-related negativity (ERN) and psychopathology: Toward an endophenotype. Clinical Psychology Review, 28, 1343–1354. First citation in articleCrossrefGoogle Scholar

  • Olvet, D. , Hajcak, G. (2009). The stability of error-related brain activity with increasing trials. Psychophysiology, 46, 957–961. First citation in articleCrossrefGoogle Scholar

  • Pailing, P. E. , Segalowitz, S. J. (2004). The error-related negativity as a state and trait measure: Motivation, personality, and ERPs in response to errors. Psychophysiology, 41, 84–95. First citation in articleCrossrefGoogle Scholar

  • Pourtois, G. , Vocat, R. , N’Diaye, K. , Spinelli, L. , Seeck, M. , Vuilleumier, P. (2010). Errors recruit both cognitive and emotional monitoring systems: Simultaneous intracranial recordings in the dorsal anterior cingulate gyrus and amygdala combined with fMRI. Neuropsychologia, 48, 1144–1159. doi: 10.1016/j.neuropsychologia.2009.12.020 First citation in articleCrossrefGoogle Scholar

  • Rabbitt, P. M. (1966). Error correction time without external error signals. Nature, 212, 438. First citation in articleCrossrefGoogle Scholar

  • Ridderinkhof, K. R. , Ullsperger, M. , Crone, E. A. , Nieuwenhuis, S. (2004). The role of the medial frontal cortex in cognitive control. Science, 306, 443–447. First citation in articleCrossrefGoogle Scholar

  • Riesel, A. , Endrass, T. , Kaufmann, C. , Kathmann, N. (2011). Overactive error-related brain activity as an endophenotype for obsessive-compulsive disorder: Evidence from unaffected first-degree relatives. American Journal of Psychiatry, 168, 317–324. First citation in articleCrossrefGoogle Scholar

  • Ruchsow, M. , Gron, G. , Reuter, K. , Spitzer, M. , Hermle, L. , Kiefer, M. (2005). Error-related brain activity in patients with obsessive-compulsive disorder and in healthy controls. Journal of Psychophysiology, 19, 298. First citation in articleLinkGoogle Scholar

  • Samar, V. J. , Bopardikar, A. , Rao, R. , Swartz, K. (1999). Wavelet analysis of neuroelectric waveforms: A conceptual tutorial. Brain and Language, 66, 7–60. First citation in articleCrossrefGoogle Scholar

  • Trujillo, L. T. , Allen, J. J. (2007). Theta EEG dynamics of the error-related negativity. Clinical Neurophysiology, 118, 645–668. First citation in articleCrossrefGoogle Scholar

  • Tzur, G. , Berger, A. (2009). Fast and slow brain rhythms in rule/expectation violation tasks: focusing on evaluation processes by excluding motor action. Behavioral Brain Research, 198, 420–428. First citation in articleCrossrefGoogle Scholar

  • Van Veen, V. , Carter, C. S. (2002). The anterior cingulate as a conflict monitor: fMRI and ERP studies. Physiology & Behavior, 77(4–5), 477–482. First citation in articleCrossrefGoogle Scholar

  • Weinberg, A. , Olvet, D. , Hajcak, G. (2010). Increased error-related brain activity in generalized anxiety disorder. Biological Psychology, 85, 472–480. First citation in articleCrossrefGoogle Scholar

  • Weinberg, A. , Riesel, A. , Hajcak, G. (2012). Integrating multiple perspectives on error-related brain activity: the ERN as a neurobehavioral trait. Motivation and Emotion, 36, 84–100. First citation in articleCrossrefGoogle Scholar

  • Wiswede, D. , Munte, T. F. , Goschke, T. , Russeler, J. (2009). Modulation of the error-related negativity by induction of short-term negative affect. Neuropsychologia, 47, 83–90. First citation in articleCrossrefGoogle Scholar

  • Wiswede, D. , Munte, T. F. , Russeler, J. (2009). Negative affect induced by derogatory verbal feedback modulates the neural signature of error detection. Soc Cognitive and Affective Neuroscience, 4(3), 227–237. First citation in articleCrossrefGoogle Scholar

  • Yeung, N. , Botvinick, M. , Cohen, J. (2004). The neural basis of error detection: Conflict monitoring and the error-related negativity. Psychological Review, 111, 931–959. First citation in articleCrossrefGoogle Scholar

  • Yeung, N. , Bogacz, R. , Holroyd, C. B. , Nieuwenhuis, S. , Cohen, J. D. (2007). Theta phase resetting and the error-related negativity. Psychophysiology, 44, 39–49. First citation in articleCrossrefGoogle Scholar

  • Yordanova, J. , Falkenstein, M. , Hohnsbein, J. , Kolev, V. (2004). Parallel systems of error processing in the brain. Neuroimage, 22, 590–602. doi: 10.1016/j.neuroimage.2004.01.040 First citation in articleCrossrefGoogle Scholar