Skip to main content
Articles

Neurocognitive Effects of Repetitive Transcranial Magnetic Stimulation in Patients with Cerebrovascular Disease Without Dementia

Published Online:https://doi.org/10.1027/0269-8803.22.1.14

Aims: The results of our pilot study suggested that one session of high frequency rTMS applied over the left dorsolateral prefrontal cortex (DLPFC) might induce measurable positive effects on executive functioning in patients with mild cognitive impairment of the vascular type without dementia (MCI-V). The aims of the current study were to replicate the results of our pilot study using a frameless stereotaxy as opposed to the standard and routinely used procedure. We also studied the effects of low frequency rTMS. Patients and method: Seven patients with MCI-V participated in a randomized, controlled, blind study with a crossover design. Each patient received 10 Hz and 1 Hz stimulation over the left DLPFC (an active stimulation site) or the motor cortex (MC; a control stimulation site). Frameless stereotaxy was used to target the DLPFC. The order of sites and frequencies was randomized. A short battery of neuropsychological tests was performed to evaluate executive function, working memory, and psychomotor speed. Results: One session of both high and low frequency rTMS was well tolerated and safe in terms of the cognitive after-effects in patients with MCI-V. We did not observe any significant frequency dependent or stimulation site-dependent cognitive effects of rTMS. Conclusion: We found neither positive nor negative significant effect of either low or high frequency rTMS applied over the DLPFC or the MC, while a mild positive site-specific effect of 10 Hz rTMS was observed in our pilot study on the Stroop interference results. These results suggested that MCI-V is a heterogeneous and poorly defined entity and, thus, rTMS might be useful in a subpopulation of this group of patients.

References

  • American Psychiatric Association. (1994). Diagnostic and statistical manual of mental disorders, DSM-IV(4th ed). Washington, DC: American Psychiatric Association. First citation in articleGoogle Scholar

  • Barrett, J. , Della-Maggiore, V. , Chouinard, P.A. , Paus, T. (2004). Mechanisms of action underlying the effect of repetitive transcranial magnetic stimulation on mood: Behavioral and brain imaging studies. Neuropharmacology, 29, 1172–1189. First citation in articleGoogle Scholar

  • Boggio, P.S. , Fregni, F. , Bermpohl, F. , Mansur, C.G. , Rosa, M. , Rumi, D.O. et al. (2005). Effect of repetitive TMS and fluoxetine on cognitive function in patients with Parkinson’s disease and concurrent depression. Movement Disorders, 20, 1178–1184. First citation in articleCrossrefGoogle Scholar

  • Cohen, E. , Bernardo, M. , Masana, J. , Arrufat, F.J. , Navarro, V. , Valls-Solé, J. et al. (1999). Repetitive transcranial magnetic stimulation in the treatment of chronic negative schizophrenia: A pilot study. Journal of Neurology, Neurosurgery, and Psychiatry, 67, 129–130. First citation in articleGoogle Scholar

  • Collie, A. , Maruff, P. , Darby, D.G. , McStephen, M. (2003). The effects of practice on the cognitive test performance of neurologically normal individuals assessed at brief test-retest intervals. Journal of the International Neuropsychological Society, 9, 419–428. First citation in articleCrossrefGoogle Scholar

  • Fabre, I. , Galinowski, A. , Oppenheim, C. , Gallarda, T. , Meder, J.F. , De Montigny, C. et al. (2004). Antidepressant efficacy and cognitive effects of repetitive transcranial magnetic stimulation in vascular depression: An open trial. International Journal of Geriatric Psychiatry, 19, 833–842. First citation in articleCrossrefGoogle Scholar

  • Van der Flier, W.M. , van Straaten, E.C. , Barkhof, F. , Verdelho, A. , Madureira, S. , Pantoni, L. et al. (2005). Small vessel disease and general cognitive function in nondisabled elderly: The LADIS study. Stroke, 36, 2116–2120. First citation in articleCrossrefGoogle Scholar

  • Folstein, M.F. , Folstein, S.E. , McHugh, P.R. (1975). Mini-Mental State. A practical method for grading the cognitive state of patients for the clinician. Journal of Psychiatric Research, 12, 189–198. First citation in articleCrossrefGoogle Scholar

  • Frisoni, G.B. , Galluzzi, S. , Bresciani, L. , Zanetti, O. , Geroldi, C. (2002). Mild cognitive impairment with subcortical vascular features: Clinical characteristics and outcome. Journal of Neurology, 249, 1423–1432. First citation in articleCrossrefGoogle Scholar

  • George, M.S. , Wassermann, E.M. , Williams, W.A. , Callahan, A. , Ketter, T.A. , Basser, P. et al. (1995). Daily repetitive transcranial magnetic stimulation (rTMS) improves mood in depression. Neuroreport, 6, 1853–1856. First citation in articleCrossrefGoogle Scholar

  • Gershon, A.A. , Dannon, P.N. , Grunhaus, L. (2003). Transcranial magnetic stimulation in the treatment of depression. American Journal of Psychiatry, 160, 835–845. First citation in articleCrossrefGoogle Scholar

  • Golden, C.J. (1978). Stroop Color and Word Test: A manual for clinical and experimental uses. Chicago IL: Stoelting Company. First citation in articleGoogle Scholar

  • Halstead, W.C. (1947). Brain and intelligence: A quantitative study of the frontal lobes. Chicago, IL: University of Chicago Press. First citation in articleGoogle Scholar

  • Huang, C.C. , Su, T.P. , Shan, I.K. , Wei, I.H. (2004). Effect of 5-Hz repetitive transcranial magnetic stimulation on cognition during a Go/NoGo task. Journal of Psychiatric Research, 38, 513–520. First citation in articleCrossrefGoogle Scholar

  • Jahanshahi, M. (2005). Other cognitive functions. In M. Hallett, S. Chokroverty (Eds.), Magnetic stimulation in clinical neurophysiology (2nd ed., pp. 281–302). Philadelphia, PA: Elsevier. First citation in articleCrossrefGoogle Scholar

  • Jenkins, J. , Shajahan, P.M. , Lappin, J.M. , Ebmeier, K.P. (2002). Right and left prefrontal transcranial magnetic stimulation at 1 Hz does not affect mood in healthy volunteers. BMC Psychiatry, 2, 1. First citation in articleGoogle Scholar

  • Little, J.T. , Kimbrell, T.A. , Wassermann, E.M. , Grafman, J. , Fiqueras, S. , Dunn, R.T. , Danielson, A. et al. (2000). Cognitive effects of 1- and 20-Hz repetitive transcranial magnetic stimulation in depression: Preliminary report. Neuropsychiatry, Neuropsychology, and Behavioral Neurology, 13, 119–124. First citation in articleGoogle Scholar

  • Martis, B. , Alam, D. , Dowd, S.M. , Hill, S.K. , Sharma, R.P. , Rosen, C. et al. (2003). Neurocognitive effects of repetitive transcranial magnetic stimulation in severe major depression. Clinincal Neuropsychology, 114, 1125–1132. First citation in articleGoogle Scholar

  • Meyer, J.S. , Xu, G. , Thornby, J. , Chowdhury, M.H. , Quach, M. (2002). Is mild cognitive impairment prodromal for vascular dementia like Alzheimer’s disease?. Stroke, 33, 1981–1985. First citation in articleCrossrefGoogle Scholar

  • Meyers , J. , Meyers, K. (1995). The Meyers scoring system for the Rey Complex Figure and the Recognition Trial: Professional manual. Odessa, FL: Psychological Assessment Resources. First citation in articleGoogle Scholar

  • Montgomery, S.A. , Asberg, M. (1979). A new depression scale designed to be sensitive to change. The British Journal of Psychiatry, 134, 382–389. First citation in articleCrossrefGoogle Scholar

  • Moser, D.J. , Jorge, R.E. , Manes, F. , Paradiso, S. , Benjamin, M.L. , Robinson, R.G. (2002). Improved executive functioning following repetitive transcranial magnetic stimulation. Neurology, 58, 1288–1290. First citation in articleCrossrefGoogle Scholar

  • Mufson, E.J. , Chen, E.Y. , Cochran, E.J. , Beckett, L.A. , Bennett, D.A. , Kordower, J.H. (1999). Entorhinal cortex ß-amyloid load in individuals with mild cognitive impairment. Experimental Neurology, 158, 469–490. First citation in articleCrossrefGoogle Scholar

  • Pascual-Leone, A. , Walsh, V. , Rothwell, J. (2000). Transcranial magnetic stimulation in cognitive neuroscience– Virtual lesion, chronometry, and functional connectivity. Current Opinion in Neurobiology, 10, 232–237. First citation in articleCrossrefGoogle Scholar

  • Paus, T. , Jech, R. , Thompson, C.J. , Comeau, R. , Peters, T. , Evans, A.C. (1997). Transcranial magnetic stimulation during positron emission tomography: A new method of studying connectivity of the human cerebral cortex. The Journal of Neuroscience, 17, 3178–3184. First citation in articleCrossrefGoogle Scholar

  • Paus, T. (1998). Imaging the brain before, during, and after transcranial magnetic stimulation. Neuropsychologia, 37, 219–224. First citation in articleCrossrefGoogle Scholar

  • Paus, T. (2002). Combination of transcranial magnetic stimulation and brain mapping. In A.W. Toga &, J.C. Mazziotta (Eds.), Brain mapping: The methods (2nd ed., pp. 691–705). New York: Academic Press. First citation in articleCrossrefGoogle Scholar

  • Petersen, R.C. , Doody, R. , Kurz, A. , Mohs, R.C. , Morris, J.C. , Rabins, P.V. et al. (2001). Current concepts in mild cognitive impairment. Archives of Neurology, 58, 1985–1992. First citation in articleCrossrefGoogle Scholar

  • Petersen, R.C. , Smith, G.E. , Waring, S.C. , Ivnik, R.J. , Tangalos, E.G. , Kokmen, E. (1999). Mild cognitive impairment: Clinical characteristics and outcome. Archive of Neurology, 56, 303–308. First citation in articleCrossrefGoogle Scholar

  • Petrides, M. , Alivisatos, B. , Meyer, E. , Evans, A.C. (1993). Functional activation of the human frontal cortex during the performance of verbal working memory task. Proceedings of the National Academy of the Sciences of the USA, 90, 878–882. First citation in articleGoogle Scholar

  • Petrides, M. , Pandya, D.N. (1999). Dorsolateral prefrontal cortex: Comparative cytoarchitectonic analysis in the human and the macaque brain and corticocortical connection patterns. European Journal of Neuroscience, 11, 1011–36. First citation in articleCrossrefGoogle Scholar

  • Rektorova, I. , Megova, S. , Bares, M. , Rektor, I. (2005). Cognitive functioning after repetitive transcranial magnetic stimulation in patients with cerebrovascular disease without dementia: A pilot study of seven patients. Journal of the Neurological Sciences, 229–230, 157–161. First citation in articleCrossrefGoogle Scholar

  • Strafella, A.P. , Paus, T. , Barrett, J. , Dagher, A. (2001). Repetitive transcranial magnetic stimulation of the human prefrontal cortex induces dopamine release in the caudate nucleus. Journal of Neuroscience, 21, RC157:1–4. First citation in articleCrossrefGoogle Scholar

  • Triggs, W.J. , McCoy, K.J. , Greer, R. , Rossi, F. , Bowers, D. , Kortenkamp, S. et al. (1999). Effects of left frontal transcranial magnetic stimulation on depressed mood, cognition, and corticomotor threshold. Biological Psychiatry, 45, 1440–1446. First citation in articleCrossrefGoogle Scholar

  • Walsh, V. , Rushworth, M. (1999). A primer of magnetic stimulation as a tool for neuropsychology. Neuropsychologia, 37, 125–135. First citation in articleGoogle Scholar

  • Wassermann, E.M. (1998). Risk and safety of repetitive transcranial magnetic stimulation: Report and suggested guidelines from the International Workshop on the Safety of Repetitive Transcranial Magnetic Stimulation, June 5–7, 1996. Electroencephalography and Clinical Neurophysiology, 108, 1–16. First citation in articleCrossrefGoogle Scholar

  • Wechsler, D. (1975). Wechsler Memory Scale. New York: Psychological Corporation. First citation in articleGoogle Scholar

  • Wilson, D.M. , Craig, D. , McIlroy, S.P. , Passmore, A.P. (2004). Vascular cognitive impairment. Clinical Gerontology, 14, 45–53. First citation in articleCrossrefGoogle Scholar

  • Zinreich, S.J. , Tebo, S. , Long, D.M. , Brem, H. , Mattox, D. , Loury, M.E. et al. (1993). Frameless stereotactic integration of CT imaging data. Radiology, 188, 735–742. First citation in articleCrossrefGoogle Scholar