Skip to main content
Original Article

The Italian Version of the Weinstein Noise Sensitivity Scale

Measurement Invariance Across Age, Sex, and Context

Published Online:https://doi.org/10.1027/1015-5759/a000099

The Weinstein’s Noise Sensitivity Scale (WNSS) is one of the most widely used questionnaires to measure noise sensitivity, the most important subjective factor moderating the impact of noise on perceived annoyance. The present study evaluates the psychometric properties of the Italian version of the WNSS, tests the measurement invariance of this scale as a function of internal and external factors, and evaluates the effect of age, sex, and context on noise sensitivity. The scale was administered to a sample of 413 adults (40% females) living in quiet or noisy contexts. Dimensionality, reliability, invariance, validity, and equivalence were analyzed. Results confirmed that the WNSS is a reliable, valid, and invariant scale. Furthermore, noise sensitivity is affected by both subjective factors, such as age and sex, and external factors, such as living context.

References

  • Aasvang, G. M. , Moum, T. , Engdahl, B. (2008). Self-reported sleep disturbances due to railway noise: Exposure-response relationships for nighttime equivalent and maximum noise levels. The Journal of the Acoustical Society of America, 124, 257–268. First citation in articleCrossrefGoogle Scholar

  • Alimohammadi, I. , Nassiri, P. , Azkhosh, M. , Sabet, M. , Hosseini, M. (2006). Reliability and validity of the Persian translation of the Weinstein Noise Sensitivity Scale. Psychological Research, 9(1–2), 74–87. First citation in articleGoogle Scholar

  • Belojevič, G. , Jakovljevič, B. , & Slepcevič, V. (2003). Noise and mental performance: Personality attributes and noise sensitivity. Noise Health, 6, 77–89. First citation in articleGoogle Scholar

  • Bentler, P. M. (1990). Comparative fit indexes in structural models. Psychological Bulletin, 107, 238–246. First citation in articleCrossrefGoogle Scholar

  • Chan, D. (2000). Detection of differential item functioning on the Kirton Adaption-Innovation Inventory using multiple-group mean and covariance structure analyses. Multivariate Behavioral Research, 35, 169–199. First citation in articleCrossrefGoogle Scholar

  • Cheung, G. W. , Rensvold, R. B. (2002). Evaluating goodness-of-fit indexes for testing measurement invariance. Structural Equation Modeling, 9, 233–255. First citation in articleCrossrefGoogle Scholar

  • Comrey, A. L. , Lee, H. B. (1992). A first course in factor analysis (2nd ed.). Hillsdale, NJ: Erlbaum. First citation in articleGoogle Scholar

  • Drasgow, F. (1984). Scrutinizing psychological tests: Measurement equivalence and equivalent relations with external variables are the central issues. Psychological Bulletin, 95, 134–135. First citation in articleCrossrefGoogle Scholar

  • Dratva, J. , Zemp, E. , Felber Dietrich, D. , Bridevaux, P. O. , Rochat, T. , Schindler, C. , Gerbase, M. W. (2010). Impact of road traffic noise annoyance on health-related quality of life: Results from a population-based study. Quality of Life Research, 19, 37–46. First citation in articleCrossrefGoogle Scholar

  • Dupuy, H. J. (1984). The Psychological General Well-Being (PGWB) Index. In N. K. Wenger, M. E. Mattson, C. D. Furberg, J. Elinson, (Eds.), Assessment of quality of life in clinical trials of cardiovascular therapies (pp. 170–183). New York: Le Jacq Publishing. First citation in articleGoogle Scholar

  • Ekehammar, B. , Dornic, S. (1990). Weinstein’s Noise Sensitivity Scale: Reliability and construct validity. Perceptual and Motor Skills, 70, 129–130. First citation in articleCrossrefGoogle Scholar

  • Feldt, L. S. (1969). A test of the hypothesis that Cronbach’s α or Kuder-Richardson coefficient twenty is the same for two tests. Psychometrika, 34, 363–373. First citation in articleGoogle Scholar

  • Fisher, R. A. (1921). On the probable error of a coefficient of correlation deduced from a small sample. Metron, 1, 3–32. First citation in articleGoogle Scholar

  • Fyhri, A. , Klaeboe, R. (2009). Road traffic noise, sensitivity, annoyance and self-reported health – a structural equation model exercise. Environment International, 35(1), 91–97. First citation in articleCrossrefGoogle Scholar

  • Grossi, E. , Mosconi, P. , Groth, N. , Niero, M. , Apolone, G. (2002). Questionario psychological general well-being index: Versione italiana. Milano: Istituto di Ricerche Farmacologiche Mario Negri. First citation in articleGoogle Scholar

  • Heinonen-Guzejev, M. , Vuorinen, H. S. , Mussalo-Rauhamaa, H. , Heikkilä, K. , Koskenvuo, M. , Kaprio, J. (2007). The association of noise sensitivity with coronary heart and cardiovascular mortality among Finnish adults. The Science of the Total Environment, 372, 406–412. First citation in articleCrossrefGoogle Scholar

  • Hommel, G. (1988). A stagewise rejective multiple test procedure based on a modified Bonferroni test. Biometrika, 75, 383–386. First citation in articleCrossrefGoogle Scholar

  • Hu, L. T. , Bentler, P. M. (1998). Fit indices in covariance structure modeling: Sensitivity to underparameterized model misspecification. Psychological Methods, 3, 424–453. First citation in articleCrossrefGoogle Scholar

  • Jakovljevič, B. , Belojevič, G. , Paunovič, K. , Stojanov, V. (2006). Road traffic noise and sleep disturbances in an urban population: Cross-sectional study. Croatian Medical Journal, 47(1), 125–133. First citation in articleGoogle Scholar

  • Kline, R. B. (2005). Principles and practice of structural equation modeling (2nd ed.). New York: Guilford. First citation in articleGoogle Scholar

  • Maxwell, B. (1996). Translation and cultural adaptation of the survey instruments. In M. O. Martin, D. L. Kelly, (Eds.), Third international mathematics and science study (TIMSS) technical report. Volume I: Design and development. Chestnut Hill, MA: Boston College. First citation in articleGoogle Scholar

  • McCrae, R. R. , Costa, P. T., Jr. (1999). A five-factor theory of personality. In L. A. Pervin, O. P. John, (Eds.), Handbook of personality: Theory and research (2nd ed., pp. 139–153). New York: Guilford. First citation in articleGoogle Scholar

  • Melamed, S. , Fried, Y. , Froom, P. (2004). The joint effect of noise exposure and job complexity on distress and injury risk among men and women: The cardiovascular occupational risk factors determination in Israel study. Journal of Occupational and Environmental Medicine, 46, 1023–1032. First citation in articleCrossrefGoogle Scholar

  • Meredith, W. (1993). Measurement invariance, factor analysis and factorial invariance. Psychometrika, 58, 525–543. First citation in articleCrossrefGoogle Scholar

  • Michaud, D. S. , Keith, S. E. , McMurchy, D. (2008). Annoyance and disturbance of daily activities from road traffic noise in Canada. The Journal of the Acoustical Society of America, 123, 784–792. First citation in articleCrossrefGoogle Scholar

  • Miedema, H. M. E. , Vos, H. (2003). Noise sensitivity and reactions to noise and other environmental conditions. The Journal of the Acoustical Society of America, 113, 1492–1504. First citation in articleCrossrefGoogle Scholar

  • Niemann, H. , Bonnefoy, X. , Braubach, M. , Hecht, K. , Maschke, C. , Rodrigues, C. , Röbbel, N. (2006). Noise-induced annoyance and morbidity results from the pan-European LARES study. Noise Health, 8(31), 63–79. First citation in articleCrossrefGoogle Scholar

  • Nijland, H. A. , Hartemink, S. , van Kamp, I. , van Wee, B. (2007). The influence of sensitivity for road traffic noise on residential location: Does it trigger a process of spatial selection? The Journal of the Acoustical Society of America, 122, 1595. First citation in articleCrossrefGoogle Scholar

  • Nivison, M. E. , Endresen, I. M. (1993). An analysis of relationships among environmental noise, annoyance and sensitivity to noise, and the consequences for health and sleep. Journal of Behavioral Medicine, 16, 257–276. First citation in articleCrossrefGoogle Scholar

  • Paunovič, K. , Jakovljevič, B. , & Belojevič, G. (2009). Predictors of noise annoyance in noisy and quiet urban streets. The Science of the Total Environment, 407, 3707–3711. First citation in articleCrossrefGoogle Scholar

  • Pawlaczyk-Łuszyńska, M. , Dudarewicz, A. , Waszkowska, M. , Szymczak, W. , Sliwińska-Kowalska, M. (2005). The impact of low frequency noise on human mental performance. International Journal of Occupational Medicine and Environmental Health, 18, 185–198. First citation in articleGoogle Scholar

  • Sandrock, S. , Schütte, M. , Griefahn, B. (2009). Impairing effects of noise in high and low noise-sensitive persons working on different mental tasks. International Archives of Occupational and Environmental Health, 82, 779–785. First citation in articleCrossrefGoogle Scholar

  • Schreckenberg, D. , Griefahn, B. , Meis, M. (2010). The associations between noise sensitivity, reported physical and mental health, perceived environmental quality, and noise annoyance. Noise Health, 12(46), 7–16. First citation in articleCrossrefGoogle Scholar

  • Smith, A. (2003). The concept of noise sensitivity: Implications for noise control. Noise Health, 5(18), 57–59. First citation in articleGoogle Scholar

  • Sobotova, L. , Jurkovicova, J. , Stefanikova, Z. , Sevcikova, L. , Aghova, L. (2010). Community response to environmental noise and the impact on cardiovascular risk score. The Science of the Total Environment, 408, 1264–1270. First citation in articleCrossrefGoogle Scholar

  • Spector, P. E. , Van Katwyk, P. T. , Brannick, M. T. , Chen, P. Y. (1997). When two factors don’t reflect two constructs: How item characteristics can produce artifactual factors. Journal of Management, 23, 659–677. First citation in articleCrossrefGoogle Scholar

  • Spielberger, C. D. (1989). STAI (State-Trait-Anxiety Inventory). Inventario per l’ansia di stato e di tratto. Forma Y [State-Trait Anxiety Inventory. Form Y]. Firenze: Organizzazioni Speciali. First citation in articleGoogle Scholar

  • Steiger, J. H. (1990). Structural model evaluation and modification: An interval estimation approach. Multivariate Behavioral Research, 25, 173–180. First citation in articleCrossrefGoogle Scholar

  • Tabachnick, B. C. , Fidell, L. S. (1996). Using multivariate statistics (3rd. ed.). New York: HarperCollins. First citation in articleGoogle Scholar

  • Tucker, L. R. , Lewis, C. (1973). A reliability coefficient for maximum likelihood factor analysis. Psychometrika, 38, 1–10. First citation in articleCrossrefGoogle Scholar

  • Van Gerven, P. W. , Vos, H. , Van Boxtel, M. P. , Janssen, S. A. , Miedema, H. M. (2009). Annoyance from environmental noise across the lifespan. The Journal of the Acoustical Society of America, 126(1), 187–194. First citation in articleCrossrefGoogle Scholar

  • Vandenberg, R. J. , Lance, C. E. (2000). A review and synthesis of the measurement invariance literature: Suggestions, practices, and recommendations for organizational research. Organizational Research Methods, 3, 4–69. First citation in articleGoogle Scholar

  • Weinstein, N. D. (1978). Individual differences in reactions to noise: A longitudinal study in a college dormitory. Journal of Applied Psychology, 63, 458–466. First citation in articleCrossrefGoogle Scholar

  • Weinstein, N. D. (1980). Individual differences in critical tendencies and noise annoyance. Journal of Sound and Vibration, 68, 241–248. First citation in articleCrossrefGoogle Scholar

  • Zimmer, K. , Ellermeier, W. (1999). Psychometric properties of four measures of noise sensitivity: A comparison. Journal of Environmental Psychology, 19, 295–302. First citation in articleCrossrefGoogle Scholar