Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

Genome-wide system analysis reveals stable yet flexible network dynamics in yeast

Genome-wide system analysis reveals stable yet flexible network dynamics in yeast

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Systems Biology — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Recently, important insights into static network topology for biological systems have been obtained, but still global dynamical network properties determining stability and system responsiveness have not been accessible for analysis. Herein, we explore a genome-wide gene-to-gene regulatory network based on expression data from the cell cycle in Saccharomyces cerevisae (budding yeast). We recover static properties like hubs (genes having several out-going connections), network motifs and modules, which have previously been derived from multiple data sources such as whole-genome expression measurements, literature mining, protein–protein and transcription factor binding data. Further, our analysis uncovers some novel dynamical design principles; hubs are both repressed and repressors, and the intra-modular dynamics are either strongly activating or repressing whereas inter-modular couplings are weak. Finally, taking advantage of the inferred strength and direction of all interactions, we perform a global dynamical systems analysis of the network. Our inferred dynamics of hubs, motifs and modules produce a more stable network than what is expected given randomised versions. The main contribution of the repressed hubs is to increase system stability, while higher order dynamic effects (e.g. module dynamics) mainly increase system flexibility. Altogether, the presence of hubs, motifs and modules induce few flexible modes, to which the network is extra sensitive to an external signal. We believe that our approach, and the inferred biological mode of strong flexibility and stability, will also apply to other cellular networks and adaptive systems.

References

    1. 1)
      • J. Ihmels , G. FrieDlander , S. Bergmann . Revealing modular organization in the yeast transcriptional network. Nat. Genet. , 370 - 377
    2. 2)
      • M. Gustafsson , M. Hörnquist , A. Lombardi . Comparison and validation of community structures in complex networks. Phys. A: Stat. Mech. Its Appl. , 559 - 576
    3. 3)
      • F. Wegner . Inverse participation ratio in 2+eps dimensions. F. Phys. B , 209 - 214
    4. 4)
      • O. Mason , M. Verwoerd . Graph theory and networks in Biology. IET Syst. Biol. , 2 , 89 - 119
    5. 5)
      • V.H. Thorsson , M. Hörnquist , A.F. Siegel , L. Hood . Reverse engineering galactose regulation in Yeast through model selection. Stat. Appl. Genet. Mol. Biol. , 1
    6. 6)
      • M. Gustafsson , M. Hörnquist , A. Lombardi . Constructing and analyzing a large-scale gene-to-gene regulatory network-Lasso-constrained inference and biological validation. IEEE/ACM Trans. Comput. Biol. Bioinf. , 254 - 261
    7. 7)
      • N.I. Kashtan , S. Itzkovitz , R. Milo , U. Alon . Efficient sampling algorithm for estimating subgraph concentrations and detecting network motifs. Bioinformatics , 11 , 1746 - 1758
    8. 8)
      • A.J. Enright , S. Van Dongen , C.A. Ouzounis . An efficient algorithm for large-scale detection of protein families. Nucleic Acids Res. , 7 , 1575 - 1584
    9. 9)
      • E.E. Schadt , J. Lam , X. Yang . An integrative genomics approach to infer causal associations between gene expression and disease. Nat. Genet. , 710 - 717
    10. 10)
      • DREAM, Dialogue on Reverse-Engineering Assessment and Methods, 2007, project webpage: http://wiki.c2b2.columbia.edu/dream/index.php/The_DREAM_Project, accessed March 2008.
    11. 11)
      • A.L. Barabasi , Z.N. Oltvai . Network biology: understanding the cell's functional organization. Nat. Rev. Genet. , 101 - 113
    12. 12)
      • K.-H. Cho , S.-M. Choo , S.H. Jung . Reverse engineering of gene regulatory networks. IET Syst. Biol. , 3 , 149 - 163
    13. 13)
      • http://micans.org/mcl/ accessed February 2008, homepage of MCL by Van Dongen, S.
    14. 14)
      • K. Basso , A.A. Margolin , G. Stolovitzky . Reverse engineering of regulatory networks in human B cells. Nat. Genet. , 382 - 390
    15. 15)
      • S. Mangan , S. Itzkovitz , A. Zaslaver , U. Alon . The incoherent feed-forward loop accelerates the response-time of the gal system of Escherichia coli. J. Mol. Biol. , 1073 - 1081
    16. 16)
      • S. Van Dongen . Graph clustering via a discrete uncoupling process. SIAM J. Matrix Anal. Appl. , 121 - 141
    17. 17)
      • R. Tibshirani . Regression shrinkage and selection via the Lasso. J. R. Stat. Soc., Ser. B , 267 - 288
    18. 18)
      • I. Lee , S.V. Date , A.T. Adai , E.M. Marcotte . A probabilistic functional network of yeast genes. Science , 1555 - 1558
    19. 19)
      • A. Ma'ayan , A. Lipshtat , R. Iyengar , E.D. Sontag . Proximity of intracellular regulatory networks to monotone systems. IET Syst. Biol. , 3 , 103 - 112
    20. 20)
      • L. Råde , B. Westergren . Beta, mathematics handbook.
    21. 21)
      • T.I. Lee , N.J. Rinaldi , F. Robert . Transcriptional regulatory networks in Saccharomyces cerevisiae. Science , 799 - 804
    22. 22)
      • S. Maslov , K. Sneppen . Specificity and stability in topology of protein networks. Science , 910 - 913
    23. 23)
      • R. Milo , S. Shen-orr , S. Itzkovitz . Network motifs: simple building blocks of complex networks. Science , 824 - 827
    24. 24)
      • H. Kitano . Computational systems biology. Nature , 206 - 210
    25. 25)
      • J. Tegner , M.K. Yeung , J. Hasty , J.J. Collins . Reverse engineering gene networks: integrating genetic perturbations with dynamical modeling. Proc. Natl. Acad. Sci. USA , 5944 - 5949
    26. 26)
      • E. Segal , M. Shapira , A. Regev . Module networks: identifying regulatory modules and their condition-specific regulators from gene expression data. Nat. Genet. , 2 , 166 - 176
    27. 27)
      • M. Ashburner , C.A. Ball , J.A. Blake . Gene ontology: tool for the unification of biology. Nat. Genet. , 25 - 29
    28. 28)
      • S. Balaji , M.M. Babu , L.M. Iyer , N.M. Luscombe , L. Aravind . Comprehensive analysis of combinatorial regulation using the transcriptional regulatory network of Yeast. J. Mol. Biol. , 213 - 227
    29. 29)
      • K. Sachs , O. Perez , D. Pe'er , D.A. Lauffenburger , G.P. Nolan . Causal protein-signaling networks derived from multiparameter single-cell data. Science , 523 - 529
    30. 30)
      • M.E. Csete , J.C. Doyle . Reverse engineering of biological complexity. Science , 1664 - 1669
    31. 31)
      • D. Thieffry , A.M. Huerta , E. Pérez-Rueda , J. Collado-Vides . From specific gene regulation to genomic networks: a global analysis of transcriptional regulation in Escherichia coli. BioEssays , 433 - 440
    32. 32)
      • N. Guelzim , S. Bottani , P. Bourgine , F. Képès . Topological and causal structure of the yeast transcriptional regulatory network. Nat. Genet. , 60 - 63
    33. 33)
      • G. Chua , M.D. Robinson , Q. Morris , T.R. Hughes . Transcriptional networks: reverse-engineering gene regulation on a global scale. Curr. Opin. Microbiol. , 638 - 646
    34. 34)
      • N.M. Luscombe , M.M. Babu , H. Yu . Genomic analysis of regulatory network dynamics reveals large topological changes. Nature , 308 - 312
    35. 35)
      • K.A. Eriksen , M. Hörnquist , K. Sneppen . Visualization of large-scale correlations in gene expressions. Funct. Integr. Genomics , 241 - 245
    36. 36)
      • M. Girvan , M.E. Newman . Community structure in social and biological networks. Proc. Natl. Acad. Sci. USA , 7821 - 7826
    37. 37)
      • T.S. Gardner , D. di Bernardo , D. Lorenz , J.J. Collins . Inferring genetic networks and identifying compound mode of action via expression profiling. Science , 102 - 105
    38. 38)
      • R.J. Cho , M.J. Campbell , E.A. Winzeler . A genome-wide transcriptional analysis of the mitotic cell cycle. Mol. Cell. , 65 - 73
    39. 39)
      • L.H. Hartwell , J.J. Hopfield , S. Leibler , A.W. Murray . From molecular to modular cell biology. Nature , C47 - 52
    40. 40)
      • P.T. Spellman , G. Sherlock , M.Q. Zhang . Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol. Biol. Cell. , 3273 - 3297
    41. 41)
      • L. Ljung , T. Glad . (1994) Modeling of dynamic systems.
    42. 42)
      • G. Balázsi , A.-L. Barabási , Z.N. Oltvai . Topological units of environmental signal processing in the transcriptional regulatory network of Escherichia coli. Proc. Natl. Acad. Sci. USA , 7841 - 7846
    43. 43)
      • H. Jeong , S.P. Mason , A.L. Barabasi , Z.N. Oltvai . Lethality and centrality in protein networks. Nature , 41 - 42
    44. 44)
      • S. Mangan , U. Alon . Structure and function of the feed-forward loop network motif. Proc. Natl. Acad. Sci. USA , 11980 - 11985
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-syb.2008.0112
Loading

Related content

content/journals/10.1049/iet-syb.2008.0112
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address