Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

Detecting drug targets with minimum side effects in metabolic networks

Detecting drug targets with minimum side effects in metabolic networks

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Systems Biology — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

High-throughput techniques produce massive data on a genome-wide scale which facilitate pharmaceutical research. Drug target discovery is a crucial step in the drug discovery process and also plays a vital role in therapeutics. In this study, the problem of detecting drug targets was addressed, which finds a set of enzymes whose inhibition stops the production of a given set of target compounds and meanwhile minimally eliminates non-target compounds in the context of metabolic networks. The model aims to make the side effects of drugs as small as possible and thus has practical significance of potential pharmaceutical applications. Specifically, by exploiting special features of metabolic systems, a novel approach was proposed to exactly formulate this drug target detection problem as an integer linear programming model, which ensures that optimal solutions can be found efficiently without any heuristic manipulations. To verify the effectiveness of our approach, computational experiments on both Escherichia coli and Homo sapiens metabolic pathways were conducted. The results show that our approach can identify the optimal drug targets in an exact and efficient manner. In particular, it can be applied to large-scale networks including the whole metabolic networks from most organisms.

References

    1. 1)
      • J. Vera-González , R. Curto , R. Cascante , N.V. Torres . Detection of potential enzyme targets by metabolic modelling and optimization: application to a simple enzymopathy. Bioinformatics , 2281 - 2289
    2. 2)
      • M. Kanehisa , S. Goto . KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. , 1 , 27 - 30
    3. 3)
      • M. Cascante , L.G. Boros , B. Comin-Anduix , P. de Atauri , J.J. Centelles , P.W. Lee . Metabolic control analysis in drug discovery and disease. Nat. Biotechnol. , 3 , 243 - 249
    4. 4)
      • L. Yang , R. Mahadevana , W.R. Cluett . A bilevel optimization algorithm to identify enzymatic capacity constraints in metabolic networks. Comput. Chem. Eng. , 9 , 2072 - 2085
    5. 5)
      • F.G. Vital-Lopez , A. Armaou , E.V. Nikolaev , C.D. Maranas . A computational procedure for optimal engineering interventions using kinetic models of metabolism. Biotechnol Prog. , 6 , 1507 - 1517
    6. 6)
      • K.G. Gadkar , F.J. Doyle Iii , J.S. Edwards , R. Mahadevan . Estimating optimal profiles of genetic alterations using constraint-based models. Biotechnol. Bioeng. , 2 , 243 - 251
    7. 7)
      • H. Jeong , S.P. Mason , A.L. Barabasi , Z.N. Oltvai . Lethality and centrality in protein networks. Nature , 41 - 42
    8. 8)
      • M.J. Torres-Galvan , N. Ortega , F. Sanchez-Garcia , C. Blanco , T. Carrillo , J. Quiralte . LTC4-synthase A-444C polymorphism: lack of association with NSAID-induced isolated periorbital angioedema in a Spanish population. Ann Allergy Asthma Immunol. , 6 , 506 - 510
    9. 9)
      • M.C. Palumbo , A. Colosimo , A. Giuliani , L. Farina . Functional essentiality from topology features in metabolic networks: a case study in yeast. FEBS Lett. , 4642 - 4646
    10. 10)
      • G.D. Prell , J.K. Khandelwal , R.S. Burns , P. Blandina , A.M. Morrishow , J.P. Green . Levels of pros-methylimidazoleacetic acid: correlation with severity of Parkinson's disease in CSF of patients and with the depletion of striatal dopamine and its metabolites in MPTP-treated mice. J. Neural Transm. , 2 , 1435 - 1463
    11. 11)
      • A. Ambesi-Impiombato , D. Bernardo . Computational biology and drug discovery: from single-target to network drugs. Curr. Bioinform. , 3 - 13
    12. 12)
      • J.C. Mombach , N. Lemke , N. da Silva , R. Ferreira , E. Isaia , C. Barcellos . Bioinformatics analysis of mycoplasma metabolism: important enzymes, metabolic similarities, and redundancy. Comput. Biol. Med. , 5 , 542 - 552
    13. 13)
      • D.B. Kell . Systems biology metabolic modelling and metabolomics in drug discovery and development. Drug Discov. Today , 1085 - 1092
    14. 14)
      • R. Guimer̀a , M. Sales-Pardo , L.A.N. Amaral . A network-based method for target selection in metabolic networks. Bioinformatics , 1616 - 1622
    15. 15)
      • K.H.O. Deane , S. Spieker , C.E. Clarke . Catechol-o-methyltransferase inhibitors versus active comparators for levodopa-induced complications in parkinson's disease. Cochrane Database System. Rev.
    16. 16)
      • U.U. Haus , S. Klamt , T. Stephen . Computing knock-out strategies in metabolic networks. J. Comput. Biol. , 3 , 259 - 268
    17. 17)
      • L.G. Boros , N.J. Serkova , M.S. Cascante , W.N. Lee . Use of metabolic pathway flux information in targeted cancer drug design. Drug Discov. Today Therapeutic Strateg. , 4 , 435 - 443
    18. 18)
      • S. Klamt , E.D. Gilles . Minimal cut sets in biochemical reaction networks. Bioinformatics , 226 - 234
    19. 19)
      • H. Jeong , Z. Oltvai , A. Barabasi . Prediction of protein essentiality based on genomic data. ComPlexUs , 19 - 28
    20. 20)
      • J. Kato , M. Hashimoto . Construction of consecutive deletions of the Escherichia coli chromosome. Mol. Syst. Biol.
    21. 21)
      • N.L. Rao , P.J. Dunford , X. Xue . Anti-inflammatory activity of a potent, selective leukotriene A4 hydrolase inhibitor in comparison with the 5-lipoxygenase inhibitor zileuton. J. Pharmacol. Exp. Ther. , 3 , 1154 - 1160
    22. 22)
      • P. Sridhar , B. Song , T. Kahveciy , S. Ranka . Mining metabolic network for optimal drug targets. Pac. Symp. Biocomput. , 291 - 302
    23. 23)
      • P. Sridhar , T. Kahveciy , S. Ranka . An iterative algorithm for metabolic network-based drug target identification. Pacific Symp. Biocomput. , 88 - 99
    24. 24)
      • D. Perumal , C.S. Lim , M.K. Sakharkar . In silico identification of putative drug targets in Pseudomonas aeruginosa through metabolic pathway analysis. Lecture Notes Bioinform. , 323 - 336
    25. 25)
      • C. Smish . Drug target validation: hitting the target. Nature , 341 - 347
    26. 26)
      • J.L. Faulon , M. Misra , S. Martin , K. Sale , R. Sapra . Genome scale enzyme-metabolite and drug-target interaction predictions using the signature molecular descriptor. Bioinformatics , 2 , 225 - 233
    27. 27)
      • J. Drews . Drug discovery: a historical perspective. Science , 5460 , 1960 - 1964
    28. 28)
      • S. Broder , J.C. Venter . Sequencing the entire genomes of free-living organisms: the foundation of pharmacology in the new millennium. Ann. Rev. Pharmacol. Toxicol. , 97 - 132
    29. 29)
      • T. Takenaka . Classical vs reverse pharmacology in drug discovery. BJU Int. , 2 , 7 - 10
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-syb.2008.0166
Loading

Related content

content/journals/10.1049/iet-syb.2008.0166
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address