Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

Estimation of metabolic pathway systems from different data sources

Estimation of metabolic pathway systems from different data sources

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Systems Biology — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Parameter estimation is the main bottleneck of metabolic pathway modelling. It may be addressed from the bottom up, using information on metabolites, enzymes and modulators, or from the top down, using metabolic time series data, which have become more prevalent in recent years. The authors propose here that it is useful to combine the two strategies and to complement time-series analysis with kinetic information. In particular, the authors investigate how the recent method of dynamic flux estimation (DFE) may be supplemented with other types of estimation. Using the glycolytic pathway in Lactococcus lactis as an illustration example, the authors demonstrate some strategies of such supplementation.

References

    1. 1)
      • M.A. Savageau . (1976) Biochemical systems analysis: a study of function and design in molecular biology.
    2. 2)
      • W.I. Wu , V.M. McDonough , J.T. Nickels . Regulation of lipid biosynthesis in Saccharmomyces cerevisiae by fumonisin B1. J. Biol. Chem. , 22 , 13171 - 13178
    3. 3)
      • E. Sontag , A. Kiyatkin , B.N. Kholodenko . Inferring dynamic architecture of cellular networks using time series of gene expression, protein and metabolite data. Bioinformatics , 12 , 1877 - 1886
    4. 4)
      • D. Fell . (1997) Understanding the control of metabolism.
    5. 5)
      • P.H.C. Eilers . A perfect smoother. Anal. Chem. , 14 , 3631 - 3636
    6. 6)
      • R.L. Burden , J.D. Faires . (1993) Numerical analysis.
    7. 7)
      • E.O. Voit , M.A. Savageau . Power-law approach to modeling biological systems; III. Methods of analysis. J. Ferment. Technol. , 3 , 233 - 241
    8. 8)
      • S.R. Veflingstad , J. Almeida , E.O. Voit . Priming nonlinear searches for pathway identification. Theor. Biol. Med. Model
    9. 9)
      • D. Visser , J.J. Heijnen . The mathematics of metabolic control analysis revisited. Metab. Eng. , 2 , 114 - 123
    10. 10)
      • M.H. Hoefnagel , A. Van der Burgt , D.E. Martens , J. Hugenholtz , J.L. Snoep . Time dependent responses of glycolytic intermediates in a detailed glycolytic model of Lactococcus lactis during glucose run-out experiments. Mol. Biol. Rep. , 157 - 161
    11. 11)
      • J. Srividhya , E.J. Crampin , P.E. McSharry , S. Schnell . Reconstructing biochemical pathways from time course data. Proteomics , 6 , 828 - 838
    12. 12)
      • A.L. Hodgkin , A.F. Huxley . A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. , 4 , 500 - 544
    13. 13)
      • J.S. Almeida . Predictive non-linear modeling of complex data by artificial neural networks. Curr. Opin. Biotechnol. , 1 , 72 - 76
    14. 14)
      • G. Goel . (2008) Reconstructing biochemical systems: systems modeling and analysis tools for decoding biological designs.
    15. 15)
      • R. Heinrich , T.A. Rapoport . A linear steady-state treatment of enzymatic chains. General properties, control and effector strength. Eur. J. Biochem. , 1 , 89 - 95
    16. 16)
      • C. de Boor , K. Höllig , S.D. Riemenschneider . (1993) Box splines. Applied mathematical sciences.
    17. 17)
      • E.O. Voit , K.L. Brigham . The role of systems biology in predictive health and personalized medicine. Open Pathol. J. , 68 - 70
    18. 18)
      • C. de Boor . (1978) A practical guide to splines. Applied mathematical sciences.
    19. 19)
      • C. Seatzu . A fitting based method for parameter estimation in S-systems. Dynam. Syst. Appl. , 1 , 77 - 98
    20. 20)
      • B. Teusink , J. Passarge , C.A. Reijenga . Can yeast glycolysis be understood in terms of in vitro kinetics of the constituent enzymes? Testing biochemistry. Eur. J. Biochem. , 17 , 5313 - 5329
    21. 21)
      • M. Vilela , C.C. Borges , S. Vinga . Automated smoother for the numerical decoupling of dynamics models. BMC Bioinf.
    22. 22)
      • M. Savageau . Biochemical systems analysis. I. Some mathematical properties of the rate law for the component enzymatic reactions. J. Theor. Biol. , 3 , 365 - 369
    23. 23)
      • B. Hernández-Bermejo , V. Fairén . Lotka–Volterra representation of general nonlinear systems. Math. Biosci. , 1 , 1 - 32
    24. 24)
      • K. Peskov , I. Goryanin , O. Demin . Kinetic model of phosphofructokinase-1 from Escherichia coli. J. Bioinf. Comput. Biol. , 4 , 843 - 867
    25. 25)
      • H. Kacser , J. Burns . The control of flux. Symp. Soc. Exp. Biol. , 65 - 104
    26. 26)
      • A.R. Schulz . (1994) Enzyme kinetics: from diastase to multi-enzyme systems.
    27. 27)
      • E. Voit . (2000) Computational analysis of biochemical systems: a practical guide for biochemists and molecular biologists.
    28. 28)
      • E.O. Voit , J. Almeida , S. Marino . Regulation of glycolysis in Lactococcus lactis: an unfinished systems biological case study. IEE Proc. Syst. Biol. , 4 , 286 - 298
    29. 29)
      • S.R. Veflingstad , P. Dam , Y. Xu , E.O. Voit , Y. Xu , J.P. Gogarten . (2008) Microbial pathway models.
    30. 30)
      • M.A. Savageau . Biochemical systems analysis. II. The steady-state solutions for an n-pool system using a power-law approximation. J. Theor. Biol. , 3 , 370 - 379
    31. 31)
      • A. Lotka . (1925) Elements of physical biology.
    32. 32)
      • S. Kikuchi , D. Tominaga , M. Arita , M. Tomita . Pathway finding from given time-courses using genetic algorithm. Genome Inf. , 304 - 305
    33. 33)
      • N.V. Torres , E.O. Voit . (2002) Pathway analysis and optimization in metabolic engineering.
    34. 34)
      • V. Hatzimanikatis , J.E. Bailey . MCA has more to say. J. Theor. Biol. , 3 , 233 - 242
    35. 35)
      • E. Voit , A.R. Neves , H. Santos . The intricate side of systems biology. Proc. Natl. Acad. Sci. USA , 25 , 9452 - 9457
    36. 36)
      • K. Sachs , O. Perez , D. Pe'er , D.A. Lauffenburger , G.P. Nolan . Causal protein-signaling networks derived from multiparameter single-cell data. Science , 5721 , 523 - 529
    37. 37)
      • I.-C. Chou , H. Martens , E.O. Voit . Parameter estimation in biochemical systems models with alternating regression. Theor. Biol. Med. Model.
    38. 38)
      • R.E. May . (1976) Theoretical ecology: principles and applications.
    39. 39)
      • E.O. Voit . A systems-theoretical framework for health and disease: inflammation and preconditioning from an abstract modeling point of view. Math. Biosci. , 11 - 18
    40. 40)
      • F. Alvarez-Vasquez , K.J. Sims , Y.A. Hannun , E.O. Voit . Integration of kinetic information on yeast sphingolipid metabolism in dynamical pathway models. J. Theor. Biol. , 3 , 265 - 291
    41. 41)
      • R.C. del Rosario , E. Mendoza , E.O. Voit . Challenges in lin-log modelling of glycolysis in Lactococcus lactis. IET Syst. Biol. , 3
    42. 42)
      • A. Arkin , J. Ross . Statistical construction of chemical-reaction mechanisms from measured time-series. J. Phys. Chem. , 3 , 970 - 979
    43. 43)
      • E.O. Voit , O. Wolkenhauer . (2008) Modeling networks using power-laws and S-systems.
    44. 44)
      • S. Even , N.D. Lindley , M. Cocaign-Bousquet . Molecular physiology of sugar catabolism in Lactococcus lactis IL1403. J. Bacteriol. , 13 , 3817 - 3824
    45. 45)
      • A.S. Torralba , K. Yu , P. Shen , P.J. Oefner , J. Ross . Experimental test of a method for determining causal connectivities of species in reactions. Proc. Natl. Acad. Sci. USA , 4 , 1494 - 1498
    46. 46)
      • P.J. Green , B.W. Silverman . (1994) Nonparametric regression and generalized linear models: a roughness penalty approach. (.
    47. 47)
      • M. Vilela , I-C. Chou , S. Vinga , A.T. Vasconcelos , E.O. Voit , J.S. Almeida . Parameter optimization in S-system models. BMC Syst. Biol.
    48. 48)
      • W. Vance , A. Arkin , J. Ross . Determination of causal connectivities of species in reaction networks. Proc. Natl. Acad. Sci. USA , 9 , 5816 - 5821
    49. 49)
      • G. Goel , I-C. Chou , E.O. Voit . System estimation from metabolic time-series data. Bioinformatics , 21 , 2505 - 2511
    50. 50)
      • V. Volterra . Variazioni e fluttuazioni del numero d'individui in specie animali conviventi. Mem. R. Accad. dei Lincei. , 31 - 113
    51. 51)
      • Y. Maki , T. Ueda , M. Okamoto , N. Uematsu , Y. Inamura , Y. Eguchi . Inference of genetic network using the expression profile time course data of mouse P19 cells. Genome Inf. , 382 - 383
    52. 52)
      • E.O. Voit , J. Almeida . Decoupling dynamical systems for pathway identification from metabolic profiles. Bioinformatics , 11 , 1670 - 1681
    53. 53)
      • S. Marino , E.O. Voit . An automated procedure for the extraction of metabolic network information from time series data. J. Bioinf. Comput. Biol. , 3 , 665 - 691
    54. 54)
      • E.J. Crampin , P.E. McSharry , S. Schnell . (2004) Extracting biochemical reaction kinetics from time series data.
    55. 55)
      • E.O. Voit . (1991) Canonical nonlinear modeling. S-system approach to understanding complexity.
    56. 56)
      • A. Sorribas , B. Hernandez-Bermejo , E. Vilaprinyo , R. Alves . Cooperativity and saturation in biochemical networks: a saturable formalism using Taylor series approximations. Biotechnol. Bioeng. , 5 , 1259 - 1277
    57. 57)
      • M.B. Eisen , P.T. Spellman , P.O. Brown , D. Botstein . Cluster analysis and display of genome-wide expression patterns. Proc. Natl. Acad. Sci. USA , 25 , 14863 - 14868
    58. 58)
      • G. Goel , I-C. Chou , E.O. Voit . Biological systems modeling and analysis: a biomolecular technique of the twenty-first century. J. Biomol. Tech. , 4 , 252 - 269
    59. 59)
      • E.O. Voit , M.A. Savageau . Power-law approach to modeling biological systems; II. Application to ethanol production. J. Ferment. Technol. , 3 , 229 - 232
    60. 60)
      • I-C. Chou , E.O. Voit . Recent developments in parameter estimation and structure identification of biochemical and genomic systems. Math. Biosc. , 57 - 83
    61. 61)
      • A.R. Neves , A. Ramos , M.C. Nunes . In vivo nuclear magnetic resonance studies of glycolytic kinetics in Lactococcus lactis. Biotechnol. Bioeng. , 2 , 200 - 212
    62. 62)
      • J. Hofmeyr , J. Rohwer , J.L. Snoep . Concepts in computational systems biology: structural analysis, kinetics, control and regulation of cellular systems.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-syb.2008.0180
Loading

Related content

content/journals/10.1049/iet-syb.2008.0180
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address