Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

Determining the distance to monotonicity of a biological network: a graph-theoretical approach

Determining the distance to monotonicity of a biological network: a graph-theoretical approach

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Systems Biology — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The authors use ideas from graph theory in order to determine how distant is a given biological network from being monotone. On the signed graph representing the system, the minimal number of sign inconsistencies (i.e. the distance to monotonicity) is shown to be equal to the minimal number of fundamental cycles having a negative sign. Suitable operations aiming at computing such a number are also proposed and shown to outperform all algorithms that are so far existing for this task. [Includes supplementary material]

References

    1. 1)
      • T. Zaslavsky . Signed graphs. Discrete Appl. Math. , 1 , 47 - 74
    2. 2)
      • E.D. Sontag . Monotone and near-monotone biochemical networks. Syst. Synth. Biol. , 59 - 87
    3. 3)
      • G. Toulouse . Theory of the frustration effect in spin glasses: I. Commun. Phys.
    4. 4)
      • M. Hirsch , H.L. Smith , A. Canada , P. Drabek , A. Fonda . (2006) Monotone dynamical systems,, Handbook of differential equations, ordinary differential equations.
    5. 5)
      • N. Deo . (1974) Graph theory with applications to engineering and computer science.
    6. 6)
      • B. DasGupta , G.A. Enciso , E. Sontag , Y. Zhang . Algorithmic and complexity results for decompositions of biological networks into monotone subsystems. Biosystems , 1 , 161 - 178
    7. 7)
      • A. Bang-Jensen , G. Gutin . When the greedy algorithm fails. Discrete Optim. , 121 - 127
    8. 8)
      • S.S. Shen-Orr , R. Milo , S. Mangan , U. Alon . Network motifs in the transcriptional regulation network of Escherichia coli. Nat. Genet. , 1 , 64 - 68
    9. 9)
      • R. Prim . Shortest connection networks and some generalizations. Bell Syst. Tech. J. , 1389 - 1401
    10. 10)
      • P. Solé , T. Zaslavsky . A coding approach to signed graphs. SIAM J. Discrete Math. , 4 , 544 - 553
    11. 11)
      • H.L. Smith . Systems of ordinary differential equations which generate an order preserving flow. A survey of results. SIAM Rev. , 1 , 87 - 113
    12. 12)
      • E. Sontag , A. Veliz-Cuba , R. Laubenbacher , A.S. Jarrah . The effect of negative feedback loops on the dynamics of boolean networks. Biophys. J. , 2 , 518 - 526
    13. 13)
      • T. Zaslavsky . A mathematical bibliography of signed and gain graphs and allied areas. Electr. J. Comb.
    14. 14)
      • U. Alon . Network motifs: theory and experimental approaches. Nat. Rev. Genet. , 6 , 450 - 461
    15. 15)
      • F. Hüffner , N. Betzler , R. Niedermeier . Separator-based data reduction for signed graph balancing’. J. Comb. Optim.
    16. 16)
      • G. Kirchhoff . Über die Auflösung der Gleichungen, auf welche man bei der untersuchung der linearen Verteilung galvanischer strome gefuhrt wird. Ann. Phys. Chem. , 497 - 508
    17. 17)
      • A. Ma'ayan , A. Lipshtat , R. Iyengar , E. Sontag . Proximity of intracellular regulatory networks to monotone. IET Syst. Biol. , 103 - 112
    18. 18)
      • A. Caprara , A. Panconesi , R. Rizzi . Packing cycles in undirected graphs. J. Algorithms , 1 , 239 - 256
    19. 19)
      • K. Oda , T. Kimura , Y. Matsuoka , A. Funahashi , M. Muramatsu , H. Kitano . Molecular inter-action map of a macrophage. AfCS Reports , 14
    20. 20)
      • H. Salgado , S. Gama-Castro , M. Peralta-Gil . RegulonDB (version 5.0): Escherichia coli K-12 transcriptional regulatory network, operon organization, and growth conditions. Nucl. Acids Res. , D394 - D397
    21. 21)
      • M.X. Goemans , D.P. Williamson . Improved approximation algorithms for maximum cut and satisfiability problems using semi-definite programming. J. ACM , 6 , 1115 - 1145
    22. 22)
      • R. Milo , S. Shen-Orr , S. Itzkovitz , N. Kashtan , D. Chklovskii , U. Alon . Network motifs: simple building blocks of complex networks. Science , 5594 , 824 - 827
    23. 23)
      • K. Oda , Y. Matsuoka , A. Funahashi , H. Kitano . A comprehensive pathway map of epidermal growth factor receptor signaling. Mol. Syst. Biol.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-syb.2009.0040
Loading

Related content

content/journals/10.1049/iet-syb.2009.0040
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address