Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

Regulation of glycolysis in Lactococcus lactis: an unfinished systems biological case study

Regulation of glycolysis in Lactococcus lactis: an unfinished systems biological case study

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IEE Proceedings - Systems Biology — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The unexpectedly long, and still unfinished, path towards a reliable mathematical model of glycolysis and its regulation in Lactococcus lactis is described. The model of this comparatively simple pathway was to be deduced from in vivo nuclear magnetic resonance time-series measurements of the key glycolytic metabolites. As to be expected from any nonlinear inverse problem, computational challenges were encountered in the numerical determination of parameter values of the model. Some of these were successfully solved, whereas others are still awaiting improved techniques of analysis. In addition, rethinking of the model formulation became necessary, because some generally accepted assumptions during model design are not necessarily valid for in vivo models. Examples include precursor–product relationships and the homogeneity of cells and their responses. Finally, it turned out to be useful to model only some of the metabolites, while using time courses of ubiquitous compounds such as adenosine triphosphate, inorganic phosphate, nicotinamide adenine dinucleotide (oxidised) and nicotinamide adenine dinucleotide (reduced) as unmodelled input functions. With respect to our specific application, the modelling process has come a long way, but it is not yet completed. Nonetheless, the model analysis has led to interesting insights into the design of the pathway and into the principles that govern its operation. Specifically, the widely observed feedforward activation of pyruvate kinase by fructose 1,6-bisphosphate is shown to provide a crucial mechanism for positioning the starving organism in a holding pattern that allows immediate uptake of glucose, as soon as it becomes available.

References

    1. 1)
      • P.J. Sands , E.O. Voit . Flux-based estimation of parameters in S-systems. Ecol. Model. , 75 - 88
    2. 2)
      • V.L. Crow , G.G. Pritchard . Fructose 1,6-diphosphate-activated L lactate dehydrogenase from Streptococcus lactis: kinetic properties and factors affecting activation. J. Bacteriol. , 82 - 91
    3. 3)
      • S. Even , C. Garrigues , P. Loubiere , N.D. Lindley , M. Cocaign-Bousquet . Pyruvate metabolism in Lactococcus lactis is dependent upon glyceraldehyde-3-phosphate dehydrogenase activity. Metab. Eng. , 198 - 205
    4. 4)
      • V. Hatzimanikatis , J.E. Bailey . MCA has more to say. J. Theor. Biol. , 233 - 242
    5. 5)
      • A. Bolotin , P. Wincker , S. Mauger , O. Jaillon , K. Malarme , J. Weissenbach , S.D. Ehrlich , A. Sorokin . The complete genome sequence of lactic acid bacterium Lactococcus lactis ssp. lactis IL1403. Genome Res. , 731 - 753
    6. 6)
      • P.K. Polisetty , E.O. Voit , E.P. Gatzke . Identification of metabolic system parameters using global optimization methods. BMC Theor. Bio. and Med. Model. , 1
    7. 7)
      • V.L. Crow , G.G. Pritchard . Purification and properties of pyruvate kinase from Streptococcus lactis. Biochim. Biophys. Acta , 90 - 101
    8. 8)
      • A.L. Koch . Metabolic control through reflexive enzyme action. J. Theor. Biol. , 75 - 102
    9. 9)
      • Naval, P.C., Gonzales, O.R., Mendoza, E., Sison, L.G.: `Heuristic parameter estimation methods for S-system models of biochemical networks', IEEE Conf. HNICEM 2005, 2005, Manila, Philippines.
    10. 10)
      • V.L. Crow , T.D. Thomas . D-tagatose 1,6-diphosphate aldolase from lactic streptococci: purification, properties, and use in measuring intracellular tagatose 1,6-diphosphate. J. Bacteriol. , 600 - 608
    11. 11)
      • M.A. Savageau . A theory of alternative designs for biochemical control systems. Biomed. Biochim. Acta , 6 , 875 - 880
    12. 12)
      • A.M. Fordyce , C.H. Moore , G.G. Pritchard . Phosphofructokinase from Streptococcus lactis. Methods Enzymol. , 77 - 82
    13. 13)
      • N.V. Torres , E.O. Voit . (2002) Pathway analysis and optimization in metabolic engineering.
    14. 14)
      • E.O. Voit , A.E.N. Ferreira . Buffering in models of integrated biochemical systems. J. Theor. Biol. , 429 - 438
    15. 15)
      • C. Seatzu . A fitting based method for parameter estimation in S-systems. Dyn. Syst. Appl. , 1 , 77 - 98
    16. 16)
      • M.A. Savageau . Biochemical systems analysis. I. Some mathematical properties of the rate law for the component enzymatic reactions. J. Theor. Biol. , 3 , 365 - 369
    17. 17)
      • J.H. Schwacke , E.O. Voit . Improved methods for the mathematically controlled comparison of biochemical systems. BMC Theor. Biol. Med. Model.
    18. 18)
      • W.S. Hlavacek , M.A. Savageau . Completely uncoupled and perfectly coupled gene expression in repressible systems. J. Mol. Biol. , 3 , 538 - 558
    19. 19)
      • B. Poolman , E.J. Smid , H. Veldkamp , W.N. Konings . Bioenergetic consequences of lactose starvation for continuously cultured Streptococcus cremoris. J. Bacteriol. , 1460 - 1468
    20. 20)
      • D.H. Irvine , M.A. Savageau . Network regulation of the immune response: alternative control points for suppressor modulation of effector lymphocytes. J. Immunol. , 4 , 2100 - 2116
    21. 21)
      • E.O. Voit , M.A. Savageau . Power-law approach to modeling biological systems. 3. Methods of analysis. J. Fermentation Technol. , 3 , 233 - 241
    22. 22)
      • R. Curto , A. Sorribas , M. Cascante . Comparative characterization of the fermentation pathway of Saccharomyces cerevisiae using biochemical systems theory and metabolic control analysis: model definition and nomenclature. Math. Biosci. , 25 - 50
    23. 23)
      • M.A. Savageau . Michaelis–Menten mechanism reconsidered: implications of fractal kinetics. J. Theor. Biol. , 115 - 124
    24. 24)
      • M.A. Savageau . Biochemical systems analysis. II. The steady-state solutions for an n-pool system using a power-law approximation. J. Theor. Biol. , 3 , 370 - 379
    25. 25)
      • E.O. Voit , J. Almeida . Decoupling dynamical systems for pathway identification from metabolic profiles. Bioinformatics , 11 , 1670 - 1681
    26. 26)
      • A.R. Neves , A. Ramos , H. Costa , I.I. van Swam , J. Hugenholtz , M. Kleerebezem , V.W. de Vos , H. Santos . Effect of different NADH oxidase levels on glucose metabolism by Lactococcus lactis: kinetics of intracellular metabolite pools determined by in vivo nuclear magnetic resonance. Appl. Environ. Microbiol. , 6332 - 6342
    27. 27)
      • J. Thompson . Regulation of sugar transport and metabolism in lactic acid bacteria. FEMS Microbiol. Rev. , 221 - 231
    28. 28)
      • W.M. de Vos . Safe and sustainable systems for food-grade fermentations by genetically modified lactic acid bacteria. Int. Dairy J. , 3 - 10
    29. 29)
      • M.E. Wall , W.S. Hlavacek , M.A. Savageau . Design of gene circuits: lessons from bacteria. Nat. Rev. Genet. , 1 , 34 - 42
    30. 30)
      • P.W. Mason , D.P. Carbone , R.A. Cushman , A.S. Waggoner . The importance of inorganic phosphate in regulation of energy metabolism in Streptococcus lactis. J. Biol. Chem. , 1861 - 1866
    31. 31)
      • A.R. Neves , A. Ramos , M.C. Nunes , M. Kleerebezem , J. Hugenholtz , W.M. de Vos , J.S. Almeida , H. Santos . In vivo nuclear magnetic resonance studies of glycolytic kinetics in Lactococcus lactis. Biotechnol. Bioeng. , 200 - 212
    32. 32)
      • S. Kimura , K. Ide , A. Kashihara , M. Kano , M. Hatakeyama , R. Masui , N. Nakagawa , S. Yokoyama , S. Kuramitsu , A. Konagaya . Inference of S-system models of genetic networks using a cooperative coevolutionary algorithm. Bioinformatics , 7 , 1154 - 1163
    33. 33)
      • S. Kikuchi , D. Tominaga , M. Arita , K. Takahashi , M. Tomita . Dynamic modeling of genetic networks using genetic algorithm and S-system. Bioinformatics , 5 , 643 - 650
    34. 34)
      • D.E. Atkinson . Limitation of metabolite concentrations and the conservation of solvent capacity in the living cell. Curr. Top. Cell. Reg. , 29 - 43
    35. 35)
      • M.H. Hoefnagel , A. van der Burgt , D.E. Martens , J. Hugenholtz , J.L. Snoep . Time dependent responses of glycolytic intermediates in a detailed glycolytic model of Lactococcus lactis during glucose run-out experiments. Mol. Biol. Rep. , 157 - 161
    36. 36)
      • J.J. Heijnen . Approximative kinetic formats used in metabolic network modeling. Biotechnol. Bioeng. , 5 , 534 - 545
    37. 37)
      • R. Lall , E.O. Voit . Parameter estimation in modulated, unbranched reaction chains within biochemical systems. Comput. Biol. Chem. , 5 , 309 - 318
    38. 38)
      • A.R. Schulz . (1994) Enzyme kinetics: from diastase to multi-enzyme systems.
    39. 39)
      • H.A. Jonas , R.F. Anders , G.R. Jago . Factors affecting the activity of the lactate dehydrogenase of Streptococcus cremoris. J. Bacteriol. , 397 - 403
    40. 40)
      • K.Y. Tsai , F.S. Wang . Evolutionary optimization with data collocation for reverse engineering of biological networks. Bioinformatics , 7 , 1180 - 1188
    41. 41)
      • B. Poolman . Transporters and their roles in LAB cell physiology. Antonie Van Leeuwenhoek , 147 - 164
    42. 42)
      • M.A. Savageau . (1976) Biochemical systems analysis: a study of function and design in molecular biology.
    43. 43)
      • E.O. Voit . The dawn of a new era of metabolic systems analysis. Drug Discovery Today: BioSilico , 5 , 182 - 189
    44. 44)
      • J.L. Galazzo , J.E. Bailey . Fermentation pathway kinetics and metabolic flux control in suspended and immobilized Saccharomyces cerevisiae. Enzyme Microb. Technol. , 162 - 172
    45. 45)
      • S. Marino , E.O. Voit . An automated procedure for the extraction of metabolic network information from time series data.
    46. 46)
      • E.O. Voit . (1991) Canonical nonlinear modeling: S-system approach to understanding complexity.
    47. 47)
      • E.O. Voit , M.A. Savageau . Accuracy of alternative representations for integrated biochemical systems. Biochemistry , 6869 - 6880
    48. 48)
      • E. Voit . (2000) Computational analysis of biochemical systems: a practical guide for biochemists and molecular biologists.
    49. 49)
      • T.D. Thomas . Activator specificity of pyruvate kinase from lactic streptococci. J. Bacteriol. , 1240 - 1242
    50. 50)
      • Y. Maki , T. Ueda , M. Okamoto , N. Uematsu , Y. Inamura , Y. Eguchi . Inference of genetic network using the expression profile time course data of mouse P19 cells. Genome Inform. , 382 - 383
    51. 51)
      • B.I. Epureanu , H.S. Greenside . Fractal basins of attraction associated with a damped Newton's method. SIAM Rev. , 1 , 102 - 109
    52. 52)
      • J. Almeida , E.O. Voit . Neural-network based parameter estimation in complex biomedical system. Genome Inform. , 114 - 123
http://iet.metastore.ingenta.com/content/journals/10.1049/ip-syb_20050087
Loading

Related content

content/journals/10.1049/ip-syb_20050087
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address