Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

Challenges to be faced in the reconstruction of metabolic networks from public databases

Challenges to be faced in the reconstruction of metabolic networks from public databases

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IEE Proceedings - Systems Biology — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

In the post-genomic era, the biochemical information for individual compounds, enzymes, reactions to be found within named organisms has become readily available. The well-known KEGG and BioCyc databases provide a comprehensive catalogue for this information and have thereby substantially aided the scientific community. Using these databases, the complement of enzymes present in a given organism can be determined and, in principle, used to reconstruct the metabolic network. However, such reconstructed networks contain numerous properties contradicting biological expectation. The metabolic networks for a number of organisms are reconstructed from KEGG and BioCyc databases, and features of these networks are related to properties of their originating database.

References

    1. 1)
      • R. Heinrich , S. Schuster . (1996) The regulation of cellular systems.
    2. 2)
      • P.D. Karp . The EcoCyc database. Nucleic Acids Res. , 1 , 56 - 58
    3. 3)
      • A.B. Horne , T.C. Hodgman , H.D. Spence , A.R. Dalby . Constructing an enzyme-centric view of metabolism. Bioinformatics , 13 , 2050 - 2055
    4. 4)
      • P.D. Karp , C.A. Ouzounis , C. Moore-Kochlacs , L. Goldovsky , P. Kaipa , D. Ahrén . Expansion of the BioCyc collection of pathway/genome databases to 160 genomes. Nucleic Acids Res. , 19 , 6083 - 6089
    5. 5)
      • F. Kayser , M. Biesemans , R. Willem , F. Malaisse-Lagae , W.J. Malaisse . Does phosphoglucoisomerase display anomeric specificity or selectivity towards α-D-glucose 6-phosphate ?. Biochem. J. , 607 - 609
    6. 6)
      • T. Pfeiffer , I. Sanchez-Valdenebro , J.C. Nuno , F. Montero , S. Schuster . Metatool: for studying metabolic networks. Bioinformatics , 3 , 251 - 257
    7. 7)
      • S. Klamt , E.D. Gilles . Minimal cut sets in biochemical reaction networks. Bioinformatics , 2 , 226 - 234
    8. 8)
      • S. Schuster , T. Dandekar , D.A. Fell . Detection of elementary flux modes in biochemical networks: a promising tool for pathway analysis and metabolic engineering. Trends Biotechol. , 2 , 53 - 60
    9. 9)
      • M. Kanehisa , S. Goto , M. Hattori , K.F. Aoki-Kinoshita , M. Itoh , S. Kawashima , T. Katayama , M. Araki , M. Hirakawa . From genomics to chemical genomics: new developments in KEGG. Nucleic Acids Res. , D354 - D357
    10. 10)
      • I. Borodina , P. Krabben , J. Nielsen . Genome-scale analysis of Streptomyces coelicolor A3(2) metabolism. Genome Res. , 6 , 820 - 829
    11. 11)
      • A.P. Burgard , E.V. Nikolaev , C.H. Schilling , C.D. Maranas . Flux coupling analysis of genome-scale metabolic network reconstructions. Genome Res. , 2 , 301 - 312
    12. 12)
      • W.J. Malaisse , I. Verbruggen , M. Biesemans , R. Willem . Delayed interconversion of D-glucose anomers in D2O. Int. J. Mol. Med. , 855 - 857
    13. 13)
      • J. Forster , I. Famili , P. Fu , B. Palsson , J. Nielsen . Genome-scale reconstruction of the Saccharomyces cerevisiae metabolic network. Genome Res. , 2 , 244 - 253
    14. 14)
      • H. Ogata , S. Goto , K. Sato , W. Fujibuchi , H. Bono , M. Kanehisa . KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. , 29 - 34
    15. 15)
      • D. Garfinkel , B. Hess . Metabolic control mechanisms VII. A detailed computer model of the glycolytic pathway in ascites cells. J. Biol. Chem. , 971 - 983
    16. 16)
      • H. Kacser , J.A. Burns , D.A. Fell . The control of flux. Biochem. Soc. Trans. , 341 - 366
    17. 17)
      • S. Becker , B. Palsson . Genome-scale reconstruction of the metabolic network in Staphylococcus aureus N315: an initial draft to the two-dimensional annotation. BMC Microbiol , 1
    18. 18)
      • Hofmeyr, J.H.S.: `Metabolic control analysis in a nutshell', Proc. 2nd Int. Conf. on Syst. Biol., 2001, p. 291–300.
    19. 19)
      • M.C. Wildermuth . Metabolic control analysis: biological applications and insights. Genome Biol. , 6
http://iet.metastore.ingenta.com/content/journals/10.1049/ip-syb_20060012
Loading

Related content

content/journals/10.1049/ip-syb_20060012
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address