Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

Evolution of design principles in biochemical networks

Evolution of design principles in biochemical networks

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
Systems Biology — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Computer modelling and simulation are commonly used to analyse engineered systems. Biological systems differ in that they often cannot be accurately characterised, so simulations are far from exact. Nonetheless, we argue in this paper that evolution results in recurring, dynamic organisational principles in biological systems, and that simulation can help to identify them and analyse their dynamic properties. As a specific example, we present a dynamic model of the galactose utilisation pathway in yeast, and highlight several features of the model that embody such ‘design principles’.

References

    1. 1)
      • J.S. Hofmeyr , A. Cornish-Bowden . Regulating the cellular economy of supply and demand. FEBS Lett. , 47 - 51
    2. 2)
      • K.K. Leuther , S.A. Johnston . Nondissociation of GAL4 and GAL80 in vivo after galactose induction. Science , 5061 , 1333 - 1335
    3. 3)
      • K.K. Rodgers , J.E. Coleman . DNA binding and bending by the transcription factors GAL4(62*) and GAL4(149*). Protein Sci. , 4 , 608 - 619
    4. 4)
      • A. Platt , R.J. Reece . The yeast galactose genetic switch is mediated by the formation of a Gal4p-Gal80p-Gal3p complex. EMBO J. , 14 , 4086 - 4091
    5. 5)
      • E.H. Davidson . (2001) Genomic Regulatory Systems: Development and Evolution.
    6. 6)
      • V. Vollenbroich , J. Meyer , R. Engels , G. Cardinali , R.A. Menezes , C.P. Hollenberg . Galactose induction in yeast involves association of Gal80p with Gal1p or Gal3p. Mol. Gen. Genet. , 3 , 495 - 507
    7. 7)
      • K. Melcher , H.E. Xu . Gal80-Gal80 interaction on adjacent Gal4p binding sites is required for complete GAL gene repression. EMBO J. , 4 , 841 - 851
    8. 8)
      • A. Raya , Y. Kawakami , C. Rodriguez-Esteban , M. Ibanes , D. Rasskin-Gutman , J. Rodriguez-Leon , D. Buscher , J.A. Feijo , J.C. Izpisua Belmonte . Notch activity acts as a sensor for extracellular calcium during vertebrate left-right determination. Nature , 6970 , 121 - 128
    9. 9)
      • P.A. Frey . The Leloir pathway: a mechanistic imperative for three enzymes to change the stereochemical configuration of a single carbon in galactose. FASEB J. , 4 , 461 - 470
    10. 10)
      • D.J. Timson , H.C. Ross , R.J. Reece . Gal3p and Gal1p interact with the transcriptional repressor Gal80p to form a complex of 1:1 stoichiometry. Biochem. J. , 515 - 520
    11. 11)
      • B. Teusink , J.A. Diderich , H.V. Westerhoff , K. Van Dam , M.C. Walsh . Intracellular glucose concentration in derepressed yeast cells consuming glucose is high enough to reduce the glucose transport rate by 50%. J. Bacteriol. , 3 , 556 - 562
    12. 12)
      • L.H. Hartwell , J.J. Hopfield , S. Leibler , A.W. Murray . From molecular to modular cell biology. Nature , C47 - C52
    13. 13)
      • G. Von Dassow , E. Meir , E.M. Munro , G.M. Odell . The segment polarity network is a robust developmental module. Nature , 6792 , 188 - 192
    14. 14)
      • A. Laughon , R.F. Gesteland . Isolation and preliminary characterization of the GAL4 gene, a positive regulator of transcription in yeast. Proc. Natl. Acad. Sci. USA , 22 , 6827 - 6831
    15. 15)
      • A. Platt , H.C. Ross , S. Hankin , R.J. Reece . The insertion of two amino acids into a transcriptional inducer converts it into a galactokinase. Proc. Natl. Acad. Sci. USA , 7 , 3154 - 3159
    16. 16)
      • G. Von Dassow , G.M. Odell . Design and constraints of the Drosophila segment polarity module: robust spatial patterning emerges from intertwined cell state switches. J. Exp. Zool. , 3 , 179 - 215
    17. 17)
      • K. Melcher , F.K. Zimmermann , K.D. Entian . (1997) Galactose metabolism in Saccharomyces cerevisiae: a paradigm for eukaryotic gene regulation, Yeast Sugar Metabolism.
    18. 18)
      • G. Peng , J.E. Hopper . Evidence for Gal3p's cytoplasmic location and Gal80p's dual cytoplasmic-nuclear location implicates new mechanisms for controlling Gal4p activity in Saccharomyces cerevisiae. Mol. Cell. Biol. , 14 , 5140 - 5148
    19. 19)
      • T. Kang , T. Martins , I. Sadowski . Wild type GAL4 binds cooperatively to the GAL1-10 UASG in vitro. J. Biol. Chem. , 13 , 9629 - 9635
    20. 20)
      • E.H. Davidson , J.P. Rast , P. Olivieri . A genomic regulatory network for development. Science , 5560 , 1669 - 1678
    21. 21)
      • W. Bajwa , T.E. Torchia , J.E. Hopper . Yeast regulatory gene GAL3: carbon regulation; UASGal elements in common with GAL1, GAL2, GAL7, GAL10, GAL80, and MEL1; encoded protein strikingly similar to yeast and Escherichia coli galactokinases. Mol. Cell. Biol. , 8 , 3439 - 3447
    22. 22)
      • E. Reifenberger , E. Boles , M. Ciriacy . Kinetic characterization of individual hexose transporters of Saccharomyces cerevisiae and their relation to the triggering mechanisms of glucose repression. Eur. J. Biochem. , 2 , 324 - 333
    23. 23)
      • M.F. Wolfe . (2000) Rube Goldberg: Inventions!.
    24. 24)
      • H.E. Xu , T. Kodadek , S.A. Johnston . A single GAL4 dimer can maximally activate transcription under physiological conditions. Proc. Natl. Acad. Sci. USA , 17 , 7677 - 7680
    25. 25)
      • D.V. Mehta , A. Kabir , P.J. Bhat . Expression of human inositol monophosphatase suppresses galactose toxicity in Saccharomyces cerevisiae: possible implications in galactosemia. Biochim. Biophys. Acta , 3 , 217 - 226
    26. 26)
      • E.O. Voit . (2000) Computational Analysis of Biochemical Systems. A Practical Guide for Biochemists and Molecular Biologists.
    27. 27)
      • H.M. Holden , I. Rayment , J.B. Thoden . Structure and function of enzymes of the Leloir pathway for galactose metabolism. J. Biol. Chem. , 45 , 43885 - 43888
    28. 28)
      • S. Ostergaard , L. Olsson , J. Nielsen . In vivo dynamics of galactose metabolism in Saccharomyces cerevisiae: metabolic fluxes and metabolite levels. Biotechnol. Bioeng. , 5 , 412 - 425
    29. 29)
      • P.M. Dey . UDP-galactose 4′-epimerase from Vicia faba seeds. Phytochemistry , 4 , 729 - 732
    30. 30)
      • D. Orrell , S. Ramsey , P. de Atauri , H. Bolouri . A method for estimating stochastic noise in large genetic regulatory networks. Bioinformatics
    31. 31)
      • D. Orrell , H. Bolouri . Control of internal and external noise in genetic regulatory networks. J. Theor. Biol.
    32. 32)
      • D. Lohr , J. Lopez . GAL4/GAL80-dependent nucleosome disruption/deposition on the upstream regions of the yeast GAL1-10 and GAL80 genes. J. Biol. Chem. , 46 , 27671 - 27678
    33. 33)
      • K. Lai , S.D. Langley , F.W. Khwaja , E.W. Schmitt , L.J. Elsas . GALT deficiency causes UDP-hexose deficit in human galactosemic cells. Glycobiology , 4 , 285 - 294
    34. 34)
      • D. Lohr , P. Venkov , J. Zlatanova . Transcriptional regulation in the yeast GAL gene family: a complex genetic network. FASEB J. , 9 , 777 - 787
    35. 35)
      • T. Ideker , V. Thorsson , J.A. Ranish , R. Christmas , J. Buhler , J.K. Eng , R. Bumgarner , D.R. Goodlett , R. Aebersold , L. Hood . Integrated genomic and proteomic analyses of a systematically perturbed metabolic network. Science , 5518 , 929 - 934
    36. 36)
      • H. Kacser , L. Acerenza . A universal method for achieving increases in metabolite production. Eur. J. Biochem. , 2 , 361 - 367
    37. 37)
      • J.M. Pratt , J. Petty , I. Riba-Garcia , D.H. Robertson , S.J. Gaskell , S.G. Oliver , R.J. Beynon . Dynamics of protein turnover, a missing dimension in proteomics. Mol. Cell. Proteomics , 8 , 579 - 591
    38. 38)
      • R. Bundschuh , F. Hayot , C. Jayaprakash . The role of dimerization in noise reduction of simple genetic networks. J. Theor. Biol. , 2 , 261 - 269
    39. 39)
      • C. Guthrie , G.R. Fink . (1991) Guide to Yeast Genetics and Molecular Biology.
    40. 40)
      • S. Ghaemmaghami , W.K. Huh , K. Bower . Global analysis of protein expression in yeast. Nature , 6959 , 737 - 741
    41. 41)
      • M. Verma , P.J. Bhat , K.V. Venkatesh . Quantitative analysis of GAL genetic switch of Saccharomyces cerevisiae reveals that nucleocytoplasmic shuttling of Gal80p results in a highly sensitive response to galactose. J. Biol. Chem. , 49 , 48764 - 48769
    42. 42)
      • D.A. Fell , S. Thomas . Physiological control of metabolic flux: the requirement for multisite modulation. Biochem. J. , 35 - 39
    43. 43)
      • H. Shimada , T. Fukasawa . Controlled transcription of the yeast regulatory gene GAL80. Gene , 1 , 1 - 9
    44. 44)
      • J.M. Gancedo , S. Lopez , F. Ballesteros . Calculation of half-lives of proteins in vivo. Heterogeneity in the rate of degradation of yeast proteins. Mol. Cell. Biochem. , 2 , 89 - 95
    45. 45)
      • A. Becskei , L. Serrano . Engineering stability in gene networks by autoregulation. Nature , 6786 , 590 - 593
    46. 46)
      • M.R. Parthun , J.A. Jaehning . A transcriptionally active form of GAL4 is phosphorylated and associated with GAL80. Mol. Cell. Biol. , 11 , 4981 - 4987
    47. 47)
      • J.H. Lienhard . (2000) The engines of our ingenuity: an engineer looks at technology and culture.
    48. 48)
      • G. Peng , J.E. Hopper . Gene activation by interaction of an inhibitor with a cytoplasmic signaling protein. Proc. Natl. Acad. Sci. USA , 13 , 8548 - 8553
    49. 49)
      • D.T. Gillespie . A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. J. Comp. Phys. , 4 , 403 - 434
    50. 50)
      • M.A. Schell , D.B. Wilson . Purification and properties of galactokinase from Saccharomyces cerevisiae. J. Biol. Chem. , 4 , 1162 - 1166
    51. 51)
      • H. Bolouri , E.H. Davidson . Transcriptional regulatory cascades in development: initial rates, not steady state, determine network kinetics. Proc. Natl. Acad. Sci. USA , 16 , 9371 - 9376
    52. 52)
      • D.T. Gillespie , L.R. Petzold . Improved leap-size selection for accelerated stochastic simulation. J. Chem. Phys. , 16 , 8229 - 8234
    53. 53)
      • G. Beare . (1992) Heath Robinson: Machines and Inventions.
    54. 54)
      • S. Majumdar , J. Ghatak , S. Mukherji , H. Bhattacharjee , A. Bhaduri . UDPgalactose 4-epimerase from Saccharomyces cerevisiae. A bifunctional enzyme with aldose 1-epimerase activity. Eur. J. Biochem. , 4 , 753 - 759
    55. 55)
      • P.J. Bhat . Galactose-1-phosphate is a regulator of inositol monophosphatase: a fact or a fiction?. Med. Hypotheses , 1 , 123 - 128
    56. 56)
      • D.A. Fell . (1997) Understanding the Control of Metabolism.
    57. 57)
      • N. van Kampen . (2001) Stochastic processes in physics and chemistry.
    58. 58)
      • A. Kotyk . Mobility of the free and of the loaded monosaccharide carrier in Saccharomyces cerevisiae. Biochim. Biophys. Acta , 1 , 112 - 119
    59. 59)
      • E. Giniger , M. Ptashne . Cooperative DNA binding of the yeast transcriptional activator GAL4. Proc. Natl. Acad. Sci. USA , 2 , 382 - 386
    60. 60)
      • J. Ramos , K. Szkutnicka , V.P. Cirillo . Characteristics of galactose transport in Saccharomyces cerevisiae cells and reconstituted lipid vesicles. J. Bacteriol. , 6 , 3539 - 3544
    61. 61)
      • D.A. Lashkari , J.L. Derisi , J.H. Mccusker , A.F. Namath , C. Gentile , S.Y. Hwang , P.O. Brown , R.W. Davis . Yeast microarrays for genome wide parallel genetic and gene expression analysis. Proc. Natl. Acad. Sci. USA , 24 , 13057 - 13062
    62. 62)
      • H. Petroski . (1994) Design paradigms: case histories of error and judgment in engineering.
    63. 63)
      • W.J. Nelson , R. Nusse . Convergence of Wnt, beta-catenin, and cadherin pathways. Science , 5663 , 1483 - 1487
    64. 64)
      • K.V. Venkatesh , P.J. Bhat , R.A. Kumar , P. Doshi . Quantitative model for Gal4p-mediated expression of the galactose/melibiose regulon in Saccharomyces cerevisiae. Biotechnol. Prog. , 1 , 51 - 57
    65. 65)
      • P.J. Bhat , T.V. Murthy . Transcriptional control of the GAL/MEL regulon of yeast Saccharomyces cerevisiae: mechanism of galactose-mediated signal transduction. Mol. Microbiol. , 5 , 1059 - 1066
    66. 66)
      • M.A. Gibson , E. Mjolsness , J.M. Bower , H. Bolouri . (2001) Modeling the activity of single genes, Computational modeling of genetic and biochemical networks.
    67. 67)
      • T. Segawa , T. Fukasawa . The enzymes of the galactose cluster in Saccharomyces cerevisiae. Purification and characterization of galactose-1-phosphate uridylyltransferase. J. Biol. Chem. , 21 , 10707 - 10709
    68. 68)
      • N.C. Christacos , M.J. Marson , L. Wells , K. Riehman , J.L. Fridovich-Keil . Subcellular localization of galactose-1-phosphate uridylyltransferase in the yeast Saccharomyces cerevisiae. Mol. Genet. Metab. , 4 , 272 - 280
    69. 69)
      • H. El-Samad , M. Khammash , H. Kurata , J.C. Doyle . Feedback regulation of the heat shock response in E. coli. Lect. Notes Control Inf. Sci. , 115 - 128
    70. 70)
      • K. Lai , L.J. Elsas . Overexpression of human UDP-glucose pyrophosphorylase rescues galactose-1-phosphate uridyltransferase-deficient yeast. Biochem. Biophys. Res. Commun. , 2 , 392 - 400
    71. 71)
      • T. Fukasawa , K. Obonai , T. Segawa , Y. Nogi . The enzymes of the galactose cluster in Saccharomyces cerevisiae. II. Purification and characterization of uridine diphosphoglucose 4-epimerase. J. Biol. Chem. , 7 , 2705 - 2707
    72. 72)
      • S.R. Biggar , G.R. Crabtree . Cell signaling can direct either binary or graded transcriptional responses. EMBO J. , 12 , 3167 - 3176
    73. 73)
      • N. Barkai , S. Leibler . Robustness in simple biochemical networks. Nature , 6636 , 913 - 917
    74. 74)
      • D.J. Timson , R.J. Reece . Kinetic analysis of yeast galactokinase: implications for transcriptional activation of the GAL genes. Biochimie , 4 , 265 - 272
    75. 75)
      • I.H. Greger , N.J. Proudfoot . Poly(A) signals control both transcriptional termination and initiation between the tandem GAL10 and GAL7 genes of Saccharomyces cerevisiae. EMBO J. , 16 , 4771 - 4779
    76. 76)
      • N.F. Lue , D.I. Chasman , A.R. Buchman , R.D. Kornberg . Interaction of GAL4 and GAL80 gene regulatory proteins in vitro. Mol. Cell. Biol. , 10 , 3446 - 3451
    77. 77)
      • J. Li , S. Wang , W.J. Vandusen , L.D. Schultz , H.A. George , W.K. Herber , H.J. Chae , W.E. Bentley , G. Rao . Green fluorescent protein in Saccharomyces cerevisiae: real-time studies of the GAL1 promoter. Biotechnol. Bioeng. , 2 , 187 - 196
    78. 78)
      • M. Carey , H. Kakidani , J. Leatherwood , F. Mostashari , M. Ptashne . An amino-terminal fragment of GAL4 binds DNA as a dimer. J. Mol. Biol. , 3 , 423 - 432
    79. 79)
      • Y. Wang , C.L. Liu , J.D. Storey , R.J. Tibshirani , D. Herschlag , P.O. Brown . Precision and functional specificity in mRNA decay. Proc. Natl. Acad. Sci. USA , 9 , 5860 - 5865
    80. 80)
      • V. Iyer , K. Struhl . Absolute mRNA levels and transcriptional initiation rates in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA , 11 , 5208 - 5212
    81. 81)
      • S. Ostergaard , L. Olsson , M. Johnston , J. Nielsen . Increasing galactose consumption by Saccharomyces cerevisiae through metabolic engineering of the GAL gene regulatory network. Nat. Biotechnol. , 12 , 1283 - 1286
http://iet.metastore.ingenta.com/content/journals/10.1049/sb_20045013
Loading

Related content

content/journals/10.1049/sb_20045013
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address