Skip to main content
  • Original Article
  • Published:

High resolution temporal variation in wood properties in irrigated and nonirrigated Eucalyptus globulus

Variations temporelles à haute résolution des propriétés du bois d’Eucalyptus globulus irrigués et non irrigués

Abstract

  • • Environmental determinants of wood properties variation were examined in Eucalyptus globulus, a globally important hardwood plantation species, in southern Tasmania, Australia.

  • • Radial variation in wood properties, measured with the SilviScan system, were re-scaled from distance to time abscissa using stem radial growth data measured with dendrometers. With this re-scaled data it was possible to evaluate how water availability and temperature affected wood density, microfibril angle (MFA) and fibre and vessel transverse dimensions in irrigated and non-irrigated trees.

  • • Wood density, fibre radial diameter and MFA were sensitive to water availability. Wood density increased and fibre radial diameter decreased in response to reduced water availability. When high water availability was maintained, wood density was negatively correlated with temperature. Together, temperature and soil matric potential explained about 60% of temporal variation in wood density variation. In contrast MFA was not related to temperature but decreased with increasing water stress. Slower growing trees also had lower MFA than faster growing trees. Slower growing trees had a larger number of vessels per unit area of wood than faster growing trees within this even aged stand. However, vessel radius to the 4th power was significantly higher in faster growing trees than in slower growing trees.

  • • Overall, E. globulus wood properties were sensitive to temporal changes in environmental conditions (particularly water availability) and associated growth rates. The data provided support for the hypothesis that growth rates are hydraulically mediated.

Résumé

  • • Nous avons analysé les déterminants environnementaux des variations des propriétés du bois d’Eucalyptus globulus qui est une importante essence feuillue de plantation du sud de la Tasmanie en Australie.

  • • La variation radiale des propriétés du bois — mesurées avec l’outil Silviscan — a été convertie en variation temporelle par le biais des mesures de la croissance radiale obtenues avec des dendromètres. Avec ces données recalibrées il a été possible d’évaluer comment la disponibilité en eau et la température ont affecté la densité du bois, l’angle des microfibrilles ainsi que les dimensions transversale des fibres et vaisseaux pour les arbres irrigués et non irrigués.

  • • La densité du bois, le diamètre radial des fibres et l’angle des microfibrilles sont sensibles à la disponibilité en eau. En réponse à une réduction de la disponibilité en eau on observe que la densité du bois augmente et le diamètre radial des fibres diminue. Lorsqu’un niveau élevé de disponibilité en eau est maintenu alors la densité du bois apparaît négativement corrélée avec la température. La température et le potentiel matriciel du sol expliquent ensemble environ 60 % de la variation temporelle de la densité du bois. À l’inverse l’angle des microfibrilles n’est pas relié à la température mais il décroît lorsque le stress hydrique augmente. Les arbres à croissance lente ont également un angle des microfibrilles plus faible que les arbres à croissance rapide. Au sein des peuplements équiennes, les arbres à croissance lente on un plus grand nombre de vaisseaux par unité de surface du bois que les arbres à croissance plus rapide. Cependant la puissance quatrième du rayon des vaisseaux est significativement plus élevée pour les arbres à croissance rapide que pour les arbres à croissance lente.

  • • Dans l’ensemble les propriétés du bois d’ E. globulus sont sensibles aux variations temporelles des conditions environnementales (en particulier la disponibilité en eau) et sont associées aux taux de croissance. Les données fournies confirment l’hypothèse que les taux de croissance sont régulés hydrauliquement.

References

  • Barnett J.R. and Bonham V.A., 2004. Cellulose microfibril angle in the cell wall of wood fibres. Biol. Rev. 79: 461–472.

    Article  PubMed  CAS  Google Scholar 

  • Bouriaud O., Leban J.-M., Bert D., and Deleuze C., 2005. Intra-annual variations in climate influence growth and wood density of Norway spruce. Tree Physiol. 25: 651–660.

    PubMed  CAS  Google Scholar 

  • Chaffey N., 2002. Why is there so little research into the cell biology of the secondary vascular system of trees? New Phytol. 153: 213–223.

    Article  Google Scholar 

  • Chaffey N., Barlow P.W., and Barnett J.R., 1998. A seasonal cycle of cell wall structure is accompanied by a cyclical rearrangement of cortical microtubules in fusiform cambial cells within taproots of Aesculus hippocastanum. New Phytol. 139: 623–635.

    Article  Google Scholar 

  • Cosgrove D.J., 1986. Biophysical control of plant cell growth. Annu. Rev. Plant Physiol. 37: 377–405.

    Article  PubMed  CAS  Google Scholar 

  • Deslauriers A., Anfodillo T., Rossi S., and Carraro V., 2007. Using simple causal modeling to understand how water and temperature affect daily stem radial variation in trees. Tree Physiol. 27: 1125–1136.

    PubMed  Google Scholar 

  • Downes G.M., Hudson I., Raymond C.A., Dean G.H., Michell A.J., Schimleck L.R., Evans R., and Muneri A., 1997. Sampling plantation eucalypts for wood and fibre properties, CSIRO Publishing, Melbourne.

    Google Scholar 

  • Downes G.M., Wimmer R., and Evans R., 2004. Interpreting sub-annual wood property variation in terms of stem growth, in: Schmitt U., Ander P., Barnett J.R., Emons A.M.C., Jeronimidis G., Saranpaä P., and Tschegg S. (Eds.), Wood fibre cell walls: methods to study their formation, structure and properties, Swedish university of Agr. sciences, Dept. of Wood Science, pp. 267–283.

  • Drew D.M. and Downes G.M., 2009. The use of precision dendrometers in research on daily stem size and wood property variation: a review. Dendrochronologia (in Press).

  • Drew D.M., O’Grady A.P., Downes G.M., Read J., and Worledge D., 2008. Daily patterns of stem size variation in irrigated and nonirrigated Eucalyptus globulus Tree Physiol. 28: 1573–1581.

    PubMed  Google Scholar 

  • Drew D.M. and Pammenter N.W., 2007. Developmental rates and morphological properties of fibres in two eucalypt clones at sites differing in water availability. Southern Hemisphere Foresty Journal 69: 71–79.

    Article  Google Scholar 

  • Evans R., 1994. Rapid measurement of the transverse dimensions of tracheids in radial wood sections from Pinus radiata. Holzforschung 48: 168–172.

    Article  Google Scholar 

  • Evans R., Downes G.M., Menz D., and Stringer S., 1995. Rapid measurement of variation in tracheid transverse dimensions in a radiata pine. Appita J. 48: 134–138.

    Google Scholar 

  • Goff G.A. and Gratch S., 1946. Smithsonian meteorological tables. Trans. Am. Soc. Ventilation Eng. 52: 95.

    Google Scholar 

  • Kozlowski T.T., Kramer P.J., and Pallardy S.G., 1991. The physiological ecology of woody plants, Academic press, San Diego.

    Google Scholar 

  • Larson P., 1994. The vascular cambium: development and structure, Springer-Verlag, New York.

    Google Scholar 

  • Leal S., Pereira H., Grabner M., and Wimmer R., 2003. Clonal and site variation of vessels in 7-year-old Eucalyptus globulus. IAWA J. 24: 185–195.

    Google Scholar 

  • Mellerowicz E.J. and Sundberg B., 2008. Wood cell walls: biosynthesis, developmental dynamics and their implications for wood properties. Curr. Opin. Plant Biol. 11: 293–300.

    Article  PubMed  CAS  Google Scholar 

  • Moroni M.T., Worledge D., and Beadle C.L., 2003. Root distribution of Eucalyptus nitens and E. globulus in irrigated and droughted soil. For. Ecol. Manage. 177: 399–407.

    Article  Google Scholar 

  • O’Grady A.P., Worledge D., and Battaglia M., 2005. Temporal and spatial changes in fine root distributions in a young Eucalyptus globulus stand in southern Tasmania. For. Ecol. Manage. 214: 373–383.

    Article  Google Scholar 

  • O’Grady A.P., Worledge D., and Battaglia M., 2008. Constraints on transpiration of Eucalyptus globulus in southern Tasmania, Australia. Agric. For. Meteorol. 148: 453–465.

    Article  Google Scholar 

  • Qiu D., Wilson I.W., Gan S., Washusen R., Moran G.F., and Southerton S.G., 2008. Gene expression in Eucalyptus branch wood with marked variation in cellulose microfibril orientation and lacking G-layers. New Phytol. 179: 94–103.

    Article  PubMed  CAS  Google Scholar 

  • Schopfer P., 2006. Biomechanics of plant growth. Am. J. Bot. 93: 1415–1425.

    Article  PubMed  Google Scholar 

  • Thomas D.S., Montagu K.D., and Conroy J.P., 2004. Changes in wood density of Eucalyptus camaldulensis due to temperature — the physiological link between water viscosity and wood anatomy. For. Ecol. Manage. 193: 157–165.

    Article  Google Scholar 

  • Thomas D.S., Montagu K.D., and Conroy J.P., 2006. Effects of leaf and branch removal on carbon assimilation and stem wood density of Eucalyptus grandis seedlings. Trees 20: 725–733.

    Article  Google Scholar 

  • Turner N.C. and Long M.J., 1980. Errors arising from rapid water loss in the measurement of leaf water potential by the pressure chamber technique. Aust. J. Plant Physiol. 7: 527–537.

    Article  Google Scholar 

  • Tyree M.T., 2003. Hydraulic limits on tree performance: transpiration, carbon gain and growth of trees. Trees 17: 95–100.

    Google Scholar 

  • Wasteneys G.O., 2004. Progress in understanding the role of microtubules in plant cells. Curr. Opin. Plant Biol. 7: 651–660.

    Article  PubMed  CAS  Google Scholar 

  • Watt M.S., Downes G.M., Whitehead D., Mason E.G., Richardson B., Grace J.C., and Moore J.R., 2005. Wood properties of juvenile Pinus radiata growing in the presence and absence of competing understorey vegetation at a dryland site. Trees 19: 580–586.

    Article  Google Scholar 

  • Wimmer R., Downes G., Evans R., and French J., 2008. Effects of site on fibre, kraft and handsheet properties of Eucalyptus globulus. Ann. For. Sci. 65: 602.

    Article  Google Scholar 

  • Wimmer R., Downes G.M., and Evans R., 2002a. High-resolution analysis of radial growth and wood density in Eucalyptus nitens, grown under different irrigation regimes. Ann. For. Sci. 59: 519–524.

    Article  Google Scholar 

  • Wimmer R., Downes G.M., and Evans R., 2002b. Temporal variation of microfibril angle in Eucalyptus nitens grown in different irrigation regimes. Tree Physiol. 22: 449–457.

    PubMed  CAS  Google Scholar 

  • Zimmerman M.H., 1983. Xylem structure and the ascent of sap, Springer-Verlag, Berlin.

    Google Scholar 

  • Zobel B.J. and Jett J.B., 1995. Genetics of wood production, Springer-Verlag, Berlin.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David M. Drew.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Drew, D.M., Downes, G.M., O’Grady, A.P. et al. High resolution temporal variation in wood properties in irrigated and nonirrigated Eucalyptus globulus . Ann. For. Sci. 66, 406 (2009). https://0-doi-org.brum.beds.ac.uk/10.1051/forest/2009017

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://0-doi-org.brum.beds.ac.uk/10.1051/forest/2009017

Keywords

Mots-clés