Skip to main content
  • Original Article
  • Published:

Genetic parameters for early wood and latewood densities and development with increasing age in Scots pine

Paramètres génétiques pour les densités du bois initial et du bois final et évolution avec l’âge chez le pin sylvestre

Abstract

  • • Each annual ring in pines consists of earlywood and latewood with considerable difference in density and width. To get a better determination of the genetic regulation of total wood density in Scots pine (Pinus sylvestris L.), density and width of those ring sections were measured in annual ring numbers 12 to 21 of Scots pines in a full-sib progeny test. Tree height and stem diameter were also measured.

  • • Heritabilities for the annual ring sections increased with age for earlywood density from 0.08 to approximately 0.25; latewood density showed similar reductions. Heritability over all 10 annual rings was 0.25 for earlywood density, 0.22 for latewood density, 0.29 for height and 0.10 for stem diameter. Genetic correlations between earlywood and latewood density and growth traits were negative, while they were strongly positive between densities of adjacent annual rings (0.70–1.0).

  • • Despite the higher heritability of earlywood density, the strong positive genetic correlation between those traits indicates little benefit from focusing solely on earlywood density when selecting for wood density. Analysing earlywood and latewood separately does not benefit from including the width of the corresponding ring section as a covariate. Juvenile wood may possibly turn into mature wood 15–20 y from the pith.

Résumé

  • • Chaque cerne annuel chez les pins est composé de bois initial et de bois final avec une différence de densité et de largeur. Pour obtenir une meilleure détermination de la régulation génétique de la densité totale de bois chez le pin sylvestre (Pinus sylvestris L.), la densité et la largeur de ces sections de cernes annuels ont été mesurées chez 12 à 21 pins sylvestres dans un essai de descendance de plein frères. La hauteur des arbres et le diamètre des troncs ont également été mesurés.

  • • Les héritabilités pour les sections de cernes annuels augmentent avec l’âge pour la densité du bois initial de 0,08 à environ 0,25 ; la densité du bois final a montré des réductions similaires. L’héritabilité sur l’ensemble de 10 cernes a été de 0,25 pour la densité du bois initial, de 0,22 pour la densité du bois final, de 0,29 pour la hauteur et de 0,10 pour diamètre du tronc. Les corrélations génétiques entre densité du bois initial et du bois final et caractéristiques de la croissance ont été négatives, alors qu’elles ont été fortement positives entre la densité des cernes adjacents (0,70–1,0).

  • • Malgré la plus forte héritabilité de la densité du bois initial, la forte corrélation génétique entre ces caractéristiques montre qu’il y a peu d’intérêt à se concentrer uniquement sur la densité du bois initial lors de la sélection pour la densité du bois. Analyser bois initial et bois final séparément ne bénéficie pas de l’inclusion comme covariable de la largeur de la section du cerne correspondant. Le bois juvénile peut devenir à son tour du bois adulte, 15–20 ans à partir de la moelle.

References

  • Bergsten U., Lindeberg J., Rindby A., and Evans R., 2001. Batch measurements of wood density on intact or prepared drill cores using X-ray microdensiometry. Wood Sci. Tech. 35: 435–452.

    Article  CAS  Google Scholar 

  • Bouffier L., Charlot, C., Raffin A., Rozenberg P., and Kremer A., 2008a. Can wood density be effectively selected at early stage in maritime pine (Pinus pinaster Ait.)? Ann. For. Sci. 65: 106.

    Article  Google Scholar 

  • Bouffier L., Rozenberg P., Raffin A., and Kremer A., 2008b. Wood density variability in successive breeding populations of maritime pine. Can. J. For. Res. 38: 2148–2158.

    Article  Google Scholar 

  • Burdon R.D., Kibblewhite R.P., Walker J.C.F., Megraw R.A., Evans R., and Cown J.C., 2004. Juvenile versus mature wood: a new concept, orthogonal corewood versus outerwood, with special reference to Pinus radiata and P. taeda. For. Sci. 50: 399–415.

    Google Scholar 

  • Cown D.J., 1992. Corewood (juvenile wood) in Pinus radiata — should we be concerned? New Zeal. J. For. Sci. 22: 87–95.

    Google Scholar 

  • Courchene C.E., Peter G.F., and Litvay J., 2006. Cellulose microfibril angle as a determinant of paper strength and hygroexpansivity in Pinus taeda L. Wood Fibre Sci. 38: 112–120.

    CAS  Google Scholar 

  • Evans R., Downes G., Menz D., and Stringer S., 1995. Rapid measurement of variation in tracheid transverse dimensions in a radiata pine tree. Appita 48: 134–138.

    Google Scholar 

  • Fries A., 1986. Volume growth and wood density of plus tree progenies of Pinus contorta in two Swedish field trials. Scand. J. For. Res. 1: 403–419.

    Article  Google Scholar 

  • Fries A. and Ericsson T., 2006. Estimating genetic parameters for wood density of Scots pine (Pinus sylvestris L.). Silvae Genet. 55: 84–92.

    Google Scholar 

  • Gaspar M.J., Louzada J.L., Silva M.E., Aguiar A., and Almeida M.H., 2008. Age trends in genetic parameters of wood density components in 46 half-sibling families of Pinus pinaster. Can. J. For. Res. 38: 1470–1477.

    Article  Google Scholar 

  • Gilmour A.R., Gogel B.J., Cullis B.R., and Thompson R., 2006. ASReml user guide release 2.0 VSN International Ltd, Hemel Hempstead, HP1 1ES, UK, 342 p.

    Google Scholar 

  • Gwaze D.P., Harding K.J., Purnell R.C., and Bridgwater F.E., 2002. Optimum selection age in loblolly pine. Can. J. For. Res. 32: 1393–1399.

    Article  Google Scholar 

  • Hannrup B., Ekberg I., and Persson A., 2000. Genetic correlations among wood, growth capacity and stem traits in Pinus sylvestris. Scand. J. For. Res. 15: 161–170.

    Article  Google Scholar 

  • Hodge G.R. and Purnell R.C., 1993. Genetic parameter estimates for wood density, transition age, and radial growth in slash pine. Can. J. For. Res. 23: 1881–1891.

    Article  Google Scholar 

  • Ivkovich M., Namkoong G., and Koshy M., 2002. Genetic variation in wood properties of interior spruce. I. Growth, latewood percentage, and wood density. Can. J. For. Res. 32: 2116–2127.

    Article  Google Scholar 

  • Kempthorne O. and Curnow R.N., 1961. The partial diallel cross. Biometrics 24: 229–250.

    Article  Google Scholar 

  • Kučera B., 1994. A hypothesis relating current annual height increment to juvenile wood formation in Norway spruce. Wood Fiber Sci. 26: 152–167.

    Google Scholar 

  • Li L. and Wu H.X., 2005. Efficiency of early selection for rotation-aged growth and wood density traits in Pinus radiata. Can. J. For. Res. 35: 2019–2029.

    Article  Google Scholar 

  • Lindeberg J., 2001. X-ray based dendro-analyses of wood properties. Lic. Thesis, Dept. of Silviculture, Swedish Univ. Agric. Sci., Report 50: 18 p.

  • Louzada J.L.P.C. and Fonseca F.M.A., 2002. The heritability of wood density components in Pinus pinaster Ait. and the implications for tree breeding. Ann. For. Sci. 59: 867–873.

    Article  Google Scholar 

  • Steffenrem A., Saranpää P., Lundqvist S.-O., and Skrøppa T., 2007. Variation in wood properties among five full-sib families of Norway spruce (Picea abies). Ann. For. Sci. 64: 799–806.

    Article  Google Scholar 

  • Ukrainetz N.K., Kang K.-Y., Aitken S.N., Stoehr M., and Mansfield S.D., 2008. Heritability and phenotypic and genetic correlations of coastal Douglas-fir (Pseudotsuga menziesii) wood quality traits. Can. J. For. Res. 38: 1536–1546.

    Article  CAS  Google Scholar 

  • Vargas-Hernandez J. and Adams W.T., 1991. Genetic variation of wood density components in young coastal Douglas-fir: implications for tree breeding. Can J. For. Res. 21: 1801–1807.

    Article  Google Scholar 

  • Vargas-Hernandez J., Adams W.T., and Krahmer R.L., 1994. Family variation in age trends of wood density traits in young Coastal Douglasfir. Wood Fiber Sci. 26: 229–236.

    Google Scholar 

  • Zamudi F., Rozenberg P., Baettig R., Vergara A., Yañez M., and Gantz C., 2005. Genetic variation of wood density components in a radiata pine progeny test located in the south of Chile. Ann. For. Sci. 62: 105–114.

    Article  Google Scholar 

  • Zobel B.J. and Sprague J.R., 1998. Juvenile wood in forest trees, Springer, Berlin, Heidelberg, and New York, 300 p.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anders Fries.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fries, A., Ericsson, T. Genetic parameters for early wood and latewood densities and development with increasing age in Scots pine. Ann. For. Sci. 66, 404 (2009). https://0-doi-org.brum.beds.ac.uk/10.1051/forest/2009019

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://0-doi-org.brum.beds.ac.uk/10.1051/forest/2009019

Keywords

Mots-clés