Skip to main content
  • Original Article
  • Published:

Inter-specific competition in mixed forests of Douglas-fir (Pseudotsuga menziesii) and common beech (Fagus sylvatica) under climate change — a model-based analysis

Abstract

  • • Mixed forests feature competitive interactions of the contributing species which influence their response to environmental change.

  • • We analyzed climate change effects on the inter-specific competition in a managed Douglasfir/beech mixed forest.

  • • Therefore, we initialised the process-based forest model 4C with published fine root biomass distributions of Douglas-fir/beech stands and a stand composition originating from yield tables to simulate forest growth under regional climate change scenarios for a Dutch and a German site.

  • • The number of days when the tree water demand exceeded the soil water supply was higher for Douglas-fir than for beech. After 45 simulation years the proportion of basal area covered by beech increased from one to seven percent. Beech’s competitive strength is mainly explained by the fine root biomass distributions and is highest under the historic climate and the driest climate change scenarios. Higher net primary production (NPP) under warmer/wetter climate but decreased NPP under warmer/drier conditions confirms Douglas-fir’s high sensitivity to limited water supply.

  • • Simulated climate change does not substantially alter the interaction of the two species but the drought-stressed trees are more susceptible to insects or pathogens. The concept of complementary water use highlights the importance of mixed forest for climate change adaptation.

References

  • Aber J., Neilson R.P., McNulty S., Lenihan J.M., Bachelet D., and Drapek R.J., 2001. Forest processes and global environmental change: Predicting the effects of individual and multiple stressors. Bioscience 51: 735–751.

    Article  Google Scholar 

  • Bartelink H., 1998. Simulation of growth and competition in mixed stands of Douglas-fir and beech. Ph.D. thesis Wageningen University, Wageningen, The Netherlands.

    Google Scholar 

  • Boisvenue C. and Running S.W., 2006. Impacts of climate change on natural forest productivity — evidence since the middle of the 20th century. Glob. Change Biol. 12: 862–882.

    Article  Google Scholar 

  • Bolte A. and Villanueva I., 2006. Interspecific competition impacts on the morphology and distribution of fine roots in European beech (Fagus sylvatica L.) and Norway spruce (Picea abies (L.) Karst.). Eur. J. For. Res. 125: 15–26.

    Google Scholar 

  • Breda N., Huc R., Granier A., and Dreyer E., 2006. Temperate forest trees and stands under severe drought: a review of ecophysiological responses, adaptation processes and long-term consequences. Ann. For. Sci. 63: 625–644.

    Article  Google Scholar 

  • Bugmann H., Grote R., Lasch P., Lindner M., and Suckow F., 1997. A new forest gap model to study the effects of environmental change on forest structure and functioning. In: Mohren G.M.J., Kramer K., and Sabaté S. (Eds.), Impacts of global change on tree physiology, Kluwer Academic Publishers, Dordrecht, The Netherlands.

    Google Scholar 

  • Burkhart H. and Tham A., 1992. Predictions from growth and yield models of the performance of mixed-species stands. In: Cannel M., Malcolm D., and Robertson P. (Eds.), The ecology of mixed-species stands of trees, Blackwell, Oxford.

    Google Scholar 

  • Cruiziat P., Cochard H., and Améglio T., 2002. Hydraulic architecture of trees: main concepts and results. Ann. For. Sci. 59: 723–753.

    Article  Google Scholar 

  • Del Río M. and Sterba H., 2009. Comparing volume growth in pure and mixed stands of Pinus sylvestris and Quercus pyrenaica. Ann. For. Sci. 66: 502.

    Article  Google Scholar 

  • De Visser P.H.B., Beier C., Rasmussen L., Kreutzer K., Steinberg N., Bredemeier M., Blanck K., Farrell E.P., and Cummins T., 1994. Biological response of five forest ecosystems in the EXMAN project to input changes of water, nutrients and atmospheric loads. For. Ecol. Manage. 68: 15–29.

    Article  Google Scholar 

  • Dittmar C., Zech W., and Elling W., 2003. Growth variations of Common beech (Fagus sylvatica L.) under different climatic and environmental conditions in Europe — a dendroecological study. For. Ecol. Manage. 173: 63–78.

    Article  Google Scholar 

  • Feliksik E. and Wilczynski S., 2004. Dendroclimatological regions of Douglas fir (Pseudotsuga menziesii Franco) in western Poland. Eur. J. For. Res. 123: 39–43.

    Google Scholar 

  • Gerstengarbe F. and Werner P., 2005. Simulationsergebnisse des regionalen Klimamodells STAR. In: Wechsung F., Becker A., and Gräfe P. (Eds.), Auswirkungen des globalen Wandels auf Wasser, Umwelt und Gesellschaft im Elbegebiet, Weißenseeverlag, Berlin, Germany.

    Google Scholar 

  • Hall S.J. and Marchand P.J., 2010. Effects of stand densitiy on ecosystem properties of subalpine forests in the southern Rocky Mountains, USA. Ann. For. Sci. 67: 102.

    Article  Google Scholar 

  • Haxeltine A. and Prentice I.C., 1996a. A general model for the light-use efficiency of primary production. Funct. Ecol. 10: 551–561.

    Article  Google Scholar 

  • Haxeltine A. and Prentice I.C., 1996b. BIOME3: An equilibrium terrestrial biosphere model based on ecophysiological constraints, resource availability, and competition among plant functional types. Glob. Biogeochem. Cycles 10: 693–709.

    Article  CAS  Google Scholar 

  • Hendriks C.M.A. and Bianchi F., 1995. Root density and root biomass in pure and mixed forest stands of Donglas-fir and Beech. Neth. J. Agric. Sci. 43: 321–331.

    Google Scholar 

  • Hermann R.K. and Lavender D.P., 1999. Douglas-fir planted forests. New For. 17: 53–70.

    Article  Google Scholar 

  • Jansen J., Sevenster J., and Faber P., 1996. Obsprengsttabellen voor belangrijke boomsorten in Nederland. Landbouwuniversiteit Wageningen, Wageningen, The Netherlands.

    Google Scholar 

  • Kelty M. and Cameron I., 1994. Ecological principles of production differences between monociultures and mixtures. In: Costa M.P.D. and Preuhsler T. (Eds.), Mixed stands: research plots, measurements and results, models, Instituto Superior de Agronomia, Lisboa, Portugal.

    Google Scholar 

  • Kint V., Lasch P., Lindner M., and Muys B., 2009. Multipurpose conversion management of Scots pine towards mixed oak-birch stands-A long-term simulation approach. For. Ecol. Manage. 257: 199–214.

    Article  Google Scholar 

  • Korol R.L., Running S.W., and Miller K.S., 1995. Incorporating intertree competition into an ecosystem model. Can. J. For. Res. 25: 413–424.

    Article  Google Scholar 

  • Lasch P., Badeck F.W., Suckow F., Lindner M., and Mohr P., 2005. Model-based analysis of management alternatives at stand and regional level in Brandenburg (Germany). For. Ecol. Manage. 207: 59–74.

    Article  Google Scholar 

  • Lebourgeois F., 2007. Climatic signal in annual growth variation of silver fir (Abies alba Mill.) and spruce (Picea abies Karst.) from the French permanent plot network (RENECOFOR). Ann. For. Sci. 64: 333–343.

    Article  Google Scholar 

  • Leuschner C. and Hertel D., 2003. Fine root biomass of temperate forests in relation to soil acidity and fertility, climate, age and species. Prog. Bot. 64: 405–438.

    Article  Google Scholar 

  • Lindner M., Sievanen R., and Pretzsch H., 1997. Improving the simulation of stand structure in a forest gap model. For. Ecol. Manage. 95: 183–195.

    Article  Google Scholar 

  • Mäkelä A., Landsberg J., Ek A.R., Burk T.E., Ter-Mikaelian M., Agren G.I., Oliver C.D., and Puttonen P., 2000a. Process-based models for forest ecosystem management: current state of the art and challenges for practical implementation. Tree Physiol. 20: 289–298.

    PubMed  Google Scholar 

  • Mäkelä A., Sievanen R., Lindner M., and Lasch P., 2000b. Application of volume growth and survival graphs in the evaluation of four process-based forest growth models. Tree Physiol. 20: 347–355.

    PubMed  Google Scholar 

  • Nakicenovic N., Alcamo J., Davis G., Vries B.D., Fenhann J., Gaffin S., Gregory K., Grübler A., Jung T., Kram T., Rovere E.L., Michaelis L., Mori S., Morita T., Pepper W., Pitcher H., Price L., Riahi K., Roehrl A., Rogner H., Sankovski A., Schlesinger M., Shukla P., Smith S., Swart R., Rooijen S.V., Victor N., and Dadi Z., 2000. IPCC Special Report Emission Scenarios. Cambridge University Press, Cambridge, United Kingdom.

    Google Scholar 

  • Oosterbaan A., Berg C.V.D., and Olsthoorn A., 1999. Monitoring competition in young mixed plantations with broad-leaved tree species: a case study. In: Olsthoorn A., Bartelink H., Gardiner J., Pretzsch H., Hekhuis H., and Franc A. (Eds.), Management of mixed-species forest: silviculture abd economics. DLO Institute for Forestry and Nature research (IBN-DLO), Wageningen, The Netherlands.

    Google Scholar 

  • Riek W. and Stähr F., 2004. Eigenschaften typischer Waldböden im Nordostdeutschen Tiefland unter besonderer Berücksichtigung des Landes Brandenburg. Landesforstanstalt Eberswalde, Eberswalde, Germany.

    Google Scholar 

  • Schmid I., 2002. The influence of soil type and interspecific competition on the fine root system of Norway spruce and European beech. Basic Appl. Ecol. 3: 339–346.

    Article  Google Scholar 

  • Stout D. and Sala A., 2003. Xylem vulnerability to cavitation in Pseutotsuga menziesii and Pinus ponderosa from contrasting habitats. Tree Physiol. 23: 43–50.

    PubMed  Google Scholar 

  • Suckow F., Badeck F., Lasch P., and Schaber J., 2001. Nutzung von Level-II-Beobachtungen für Test und Anwendung des Sukzessionsmodells FORESEE. Beiträge für Forstwirtschaft und Landschaftsökologie 35: 84–87.

    Google Scholar 

  • Tiktak A. and Bouten W., 1990. Soil hydrological system characterization of the two ACIFORN stands using monitoring data and the soil hydrological model “SWIF”. Dutch priority programme on acidification, Wageningen, The Netherlands.

    Google Scholar 

  • Tiktak A., and Bouten W., 1994. Soil-water dynamics and long-term water balances of a Douglas-fir stand in the Netherlands. J. Hydrol. 156: 265–283.

    Article  Google Scholar 

  • Tiktak A., Konsten C., Maas R.V.D., and Bouten W., 1988. Soil chemistry and physics of two Douglas-fir stands affected by acid atmospheric deposition on the Veluwe, the Netherlands. Dutch priority programme on acidification, Wageningen, The Netherlands.

    Google Scholar 

  • Van den Hurk B., Tank A., Lederink G., Ulden A.V., Oldenborgh G.V., Katsman C., Brink H.V.D., Keller F., Bessembinder J., Burgers G., Komen G., Hazeleger W., and Drijhout S., 2006. Climate change scenarios 2006 for the Netherlands. KNMI (Royal Dutch Meteorological Institute), de Bilt, The Netherlands.

    Google Scholar 

  • Van der Werf G., Sass-Klaassen U., and Mohren G.M.J., 2007. The impact of the 2003 summer drought on the intra-annual growth pattern of beech (Fagus sylvatica L.) and oak (Quercus robur L.) on a dry site in the Netherlands. Dendrochronologia 25: 103–112.

    Article  Google Scholar 

  • Verkaik E., Moraal L., and Nabuurs G., 2009. Potential Impacts of climate change on Dutch forests — Mapping the risks. In, Alterra-report, Wageningen, p. 84.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher Reyer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reyer, C., Lasch, P., Mohren, G.M.J. et al. Inter-specific competition in mixed forests of Douglas-fir (Pseudotsuga menziesii) and common beech (Fagus sylvatica) under climate change — a model-based analysis. Ann. For. Sci. 67, 805 (2010). https://0-doi-org.brum.beds.ac.uk/10.1051/forest/2010041

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://0-doi-org.brum.beds.ac.uk/10.1051/forest/2010041

Keywords