Skip to main content
  • Original Article
  • Published:

Genetic correlations between wood quality traits of Pinus pinaster Ait

Corrélations génétiques entre propriétés du bois chez Pinus pinaster Ait

Abstract

  • • It is essential to understand how characteristics are related to each other in breeding programmes to select wood properties, in order to avoid that, in selecting for one trait, we are negatively affecting another. Moreover, measuring wood properties is time consuming and expensive.

  • • This study assesses genetic and phenotypic correlations between wood density components and spiral grain of 46 half-sib families of Pinus pinaster in seventeen-year-old trees.

  • • Results showed that genetic correlations for all wood density components were higher than corresponding phenotypic correlations. Furthermore, all wood density components were highly genetically correlated with ring density, and also closely associated among themselves. Results showed a higher genetic correlation of ring density with earlywood density (r g = 0.96) than with latewood density r g = 0.79). A moderate to high positive genetic correlation was found between spiral grain and wood density characteristics (0.29–0.61).

  • • We conclude that ring density (overall wood density) can be improved by increasing either earlywood density, latewood percent, or both of these traits, and spiral grain can be modify in future plantations.

Résumé

  • • En amélioration génétique, il est essentiel de connaître le degré de liaison entre caractères de manière à éviter lors de la sélection pour un caractère une contre-sélection pour un autre. De plus, la mesure des propriétés du bois est lourde et coûteuse.

  • • Dans cette étude, nous étudions les corrélations génétiques et phénotypiques entre les composantes de la densité du bois et l’angle du fil chez 46 familles de demi-frères de Pinus pinaster âgées de 17 ans.

  • • Les résultats montrent que les corrélations génétiques pour toutes les composantes de la densité du bois sont plus élevées que les corrélations phénotypiques. De plus, toutes les composantes de la densité sont fortement corrélées génétiquement avec la densité du cerne et étroitement liées entre elles. Les résultats indiquent une liaison génétique plus forte entre la densité du cerne et la densité du bois initial (r g = 0.96) qu’avec le bois final (r g = 0.79). Une corrélation génétique modérée à forte est mise en évidence entre l’angle du fil du bois et les caractéristiques de densité (0.29–0.61).

  • • Nous concluons que la densité du cerne peut être améliorée soit en augmentant la densité du bois initial, soit la proportion de bois final, soit les deux et que l’angle du fil peut être modifié pour les plantations futures.

References

  • Abdel-Gadir A.Y., Krahmer R.L., and Mckimmy M.D., 1993. Intra-ring variations in mature Douglas fir trees from provenance plantations. Wood Fiber Sci. 25: 170–181.

    Google Scholar 

  • Aguiar A., 1993. Análise da variação do crescimento em altura de descendências maternais de pinheiro bravo. Silva Lus. 1: 267–274.

    Google Scholar 

  • Arbez M., Baradat P., Birot Y., Azoeuf P., and Hoslin R., 1978. Variability and heredity of spiral grain measured by radioisotopes in Pinus pinaster Ait. and Pinus nigra Arn. ssp. laricio var. calabrica. Can. J. For. Res. 8: 280–289.

    Article  Google Scholar 

  • Bouffier L., Charlot C., Raffin A., Rozenberg P., and Kremer A., 2008. Can wood density be efficiently selected at early stage in maritime pine (Pinus pinaster Ait.) Ann. For. Sci. 65: 106.

    Article  Google Scholar 

  • Cotterill P.P., Dean C.A., and Vanwyk G., 1987. Additive and dominance genetic effects in Pinus pinaster, Pinus radiata and Pinus elliottii and some implications for breeding strategy. Silvae Genet. 36: 221–232.

    Google Scholar 

  • Cown D.J. and Parker M.L., 1978. Comparison of annual ring density profiles in hardwoods and softwoods by x-ray densitometry. Can. J. For. Res. 8: 442–449.

    Article  Google Scholar 

  • Eisemann R.L., Harding K.J., and Eccles D.B., 1990. Genetic parameters and predicted selection responses for growth and wood properties in a population of Araucaria cunninghamii. Silvae Genet. 39: 206–216.

    Google Scholar 

  • Ferrand J.C., 1982. Réflexions sur la densité du bois. 2e partie: Calcul de la densité et de son hétérogénéité. Holzforschung 36: 153–157.

    Article  Google Scholar 

  • Fujimoto T., Akutsu H., Kita K., Uchiyama K., Kuromaru M., and Oda K., 2006. Age trends of genetic parameters of spiral grain in hybrid larch F-1 and implications for efficiency of early selection. J. Wood Sci. 52: 101–106.

    Article  Google Scholar 

  • Fujisawa Y., Ohta S., and Tajima M., 1993. Wood characteristics and genetic variations insugi (Cryptomeria Japonica) 2. Variation in growth ring components among plus-trees clones and test stands. Mokuzai Gakkaishi 39: 875–882.

    Google Scholar 

  • Gapare W., Hathorn A., Kain D., Matheson C., and Wu H., 2007. Inheritance of spiral grain in the juvenile core of Pinus radiata. Can. J. For. Res. 37: 116–127.

    Article  Google Scholar 

  • Gaspar M.J., Louzada J.L.P.C., Silva M.E., Aguiar A., and Almeida M.H., 2008. Age trends in genetic parameters of wood density components in 46 half-sibling families of Pinus pinaster Ait. Can. J. For. Res. 38: 1470–1477.

    Article  Google Scholar 

  • Gilmour A., Gogel B., Cullis B., Welham S., and Thompson R., 1998. ASREML Users Manual, VSN International. New south Wales Agriculture, Orange.

    Google Scholar 

  • Hallingbäck, H.R., Jansson, G. and Hannrup, B., 2008. Genetic parameters for grain angle in 28-year-old Norway spruce progeny trials and their parent seed orchard. Ann. For. Sci. 65: 301.

    Article  Google Scholar 

  • Hannrup B., Grabner M., Karlsson B., Müller U., Rosner S., Wilhelmsson L., and Wimmer R., 2002. Genetic parameters for spiral-grain angle in two 19-year-old clnal Norway spruce trials. Ann. For. Sci. 59: 551–556.

    Article  Google Scholar 

  • Hannrup B., Säll H., and Jansson G., 2003. Genetic parameters for spiral grain in Scots pine and Norway spruce. Silvae Genet. 52: 215–220.

    Google Scholar 

  • Hansen J.K. and Roulund H., 1997. Genetic parameters for spiral grain, stem form, pilodyn and growth in 13 years old clones of Sitka spruce (Picea sitchensis (Bong.) Carr.). Silvae Genet. 46: 107–113.

    Google Scholar 

  • Harfouche A., Baradat P., and Durel C., 1995. Intraspecific variability in Maritime pine (Pinus pinaster Ait.) in the South-East of France. 1. Variability in autochthonous populations nd in the whole range of species. Ann. For. Sci. 52: 307–328.

    Article  Google Scholar 

  • Harris J.M., 1989. Spiral grain and wave phenomena in wood formation. Series in Wood Science, Berlin, Heidelberg, and New York.

    Google Scholar 

  • Hodge G.R. and Purnell R.C., 1993. Genetic parameter estimates for wood density, transition age, and radial growth in slash pine. Can. J. For. Res. 23: 1881–1891.

    Article  Google Scholar 

  • Hopkins E. and Butcher T., 1994. Improvement of Pinus pinaster Ait. in Western Australia. CALMScience 1: 159–242.

    Google Scholar 

  • Hylen G., 1997. Genetic variation of wood density and its relationship with growth traits in young Norway spruce. Silvae Genet. 46: 55–60.

    Google Scholar 

  • Hylen G., 1999. Age trends in genetic parameters of wood density in young Norway spruce. Can. J. For. Res. 29: 135–143.

    Article  Google Scholar 

  • Jozsa L., Richards J., and Johnson S., 1987. Calibration of Forintek’s direct reading x-ray densitometer, Forintek Canada Corp., Vancouver.

    Google Scholar 

  • Kumar S., 2002. Earlywood-latewood demarcation criteria and their effect on genetic parameters of growth ring density components and efficiency of selection for end-of-rotation density of radiata pine. Silvae Genet. 51: 241–246.

    Google Scholar 

  • Loo J.A., Tauer C.G., and van Buijtenen J.P., 1984. Juvenil mature relationships and heritability estimates of several traits in loblolly pine (Pinus taeda). Can. J. For. Res. 14: 822–825.

    Article  Google Scholar 

  • Louzada J.L.P.C., 2000. Variação fenotípica e genética em características estruturais na madeira de Pinus pinaster Ait. Universidade de Trásos-Montes e Alto Douro, Vila Real, 293 p.

    Google Scholar 

  • Louzada J.L.P.C., 2003. Genetic correlations between wood density components in Pinus pinaster Ait. Ann. For. Sci. 60: 285–294.

    Article  Google Scholar 

  • Louzada J.L.P.C. and Fonseca F.M.A., 2002. The heritability of wood density components in Pinus pinaster Ait. and implications for tree breeding. Ann. For. Sci. 59: 867–873.

    Article  Google Scholar 

  • Nichols J.W.P., Morris J.D., and Pederick L.A., 1980. Heritability estimates of density characteristics in juvenil Pinus radiata wood. Silvae Genet. 29: 54–61.

    Google Scholar 

  • Pliura A., Zhang, S.Y., Bousquet J., and MacKay J., 2006. Age trends in genotypic variation of wood density and its intra-ring components in young poplar hybrid crosses. Ann. For. Sci. 63: 673–685.

    Article  Google Scholar 

  • Raymond C.A., 2002. Genetics of Eucalyptus wood properties. Ann. For. Sci. 59: 525–531.

    Article  Google Scholar 

  • Roulund H., Alpuim M., Varela M.C., and Aguiar A., 1988. A Tree improvement plan for Pinus pinaster in Portugal. EFN, Lisboa.

    Google Scholar 

  • Rudman P., 1968. Growth Ring Analysis. J. Inst. Wood Sci. 4: 58–63.

    Google Scholar 

  • Silva J., Borralho N., and Wellendorf H., 2000. Genetic parameter estimates for diameter growth, pilodyn penetration and spiral grain in Picea abies (L.) Karst. Silvae Genet. 49: 29–36.

    Google Scholar 

  • Talbert J.T., Jett J.B., and Bryant R.L., 1983. Inheritance of wood specific-gravity in an unimproved loblolly-pine population — 20 years of results. Silvae Genet. 32: 33–37.

    Google Scholar 

  • Vargas-Hernandez J. and Adams W.T., 1991. Genetic-variation of wood density components in young coastal Douglas-Fir — Implications for tree breeding. Can. J. For. Res. 21: 1801–1807.

    Article  Google Scholar 

  • Vargas-Hernandez J. and Adams W.T., 1992. Age-age correlations and early selection for wood density in young coastal douglas-fir. For. Sci. 38: 467–478.

    Google Scholar 

  • Williams C.G. and Megraw R.A., 1994. Juvenil-mature relationships for wood density in Pinus taeda. Can. J. For. Res. 24: 714–722.

    Article  Google Scholar 

  • Zamudio F., Rozenberg P., Baettig R., Vergara A., Yañez M., and Gantz C., 2005. Genetic variation of wood density components in a radiata pine progeny test located in the south of Chile. Ann. For. Sci. 62: 105–114.

    Article  Google Scholar 

  • Zas R., Merlo E., and Fernandez-López J., 2004. Genetic parameter estimates for maritime pine in the Atlantic coast of North-Wet Spain. For. Genet. 11: 45–53.

    Google Scholar 

  • Zhang S.Y., 1998. Effect of age on the variation, correlations and inheritance of selected wood characteristics in black spruce (Picea mariana). Wood Sci. Technol. 32: 197–204.

    CAS  Google Scholar 

  • Zhang S.Y. and Morgenstern E.K., 1995. Genetic-variation and inheritance of wood density in black spruce (Picea mariana) and its relationship with growth — implications for tree breeding. Wood Sci. Technol. 30: 63–75.

    Article  Google Scholar 

  • Zobel B.J. and Jett J.B., 1995. Genetics of wood production. Series in Wood Science, Berlin.

    Google Scholar 

  • Zobel B.J. and Sprague J.R., 1998. Juvenil wood in forest trees. Series in Wood Science, Berlin.

    Google Scholar 

  • Zobel B.J. and van Buijtenen J.P., 1989. Wood variation — Its causes and control. Series in Wood Science, Berlin.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria João Gaspar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gaspar, M.J., Louzada, J.L., Aguiar, A. et al. Genetic correlations between wood quality traits of Pinus pinaster Ait. Ann. For. Sci. 65, 703 (2008). https://0-doi-org.brum.beds.ac.uk/10.1051/forest:2008054

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://0-doi-org.brum.beds.ac.uk/10.1051/forest:2008054

Keywords

Mots-clés