Skip to main content
  • Original Article
  • Published:

Climatic significance of tree-ring width and intra-annual density fluctuations in Pinus pinea from a dry Mediterranean area in Portugal

Signification climatique de la largeur des cernes et des fluctuations intra annuelles de la densité chez Pinus pinea dans une région méditerranéenne sèche du Portugal

Abstract

In Mediterranean climates trees may go through two periods of dormancy, resulting in special anatomical features such as false rings and other intra-annual density fluctuations (IADFs). In this paper, ring growth and the presence of IADFs were studied in Pinus pinea L. growing in the coastal and inland regions of Alentejo (southern Portugal). In order to identify the triggering factors associated with the IADFs, a new classification was proposed for the IADFs in P. pinea: Type E (latewoodlike cells within earlywood); Type E+ (transition cells between earlywood and latewood); Type L (earlywoodlike cells within latewood) and Type L+ (earlywoodlike cells between latewood and earlywood of the next tree ring). Response function analyses showed that radial growth of P. pinea was strongly correlated with precipitation in southern Portugal. The climatic response of P. pinea was higher in the inland area where the summer drought is more severe, the winter temperatures are lower and the soils have low water-holding capacity, in comparison with the coastal area. IADFs were frequent in P. pinea and most of the IADFs were observed in latewood. The presence of IADFs was correlated with fluctuations in climate parameters during the growing season. The IADF type E+ was linked to precipitation events early in summer. The IADF type L and L+ were associated with above-average precipitation in early autumn.

Résumé

Dans les climats méditerranéens, les arbres peuvent traverser deux périodes de dormance, ce qui a pour conséquence des caractéristiques anatomiques particulières telles que des faux cernes et des fluctuations intra annuelles de densité (IADFs). Dans cet article, la croissance des cernes et la présence de IADFs ont été étudiées chez Pinus pinea L. poussant dans les régions côtières et intérieures de l’Alentejo (sud-ouest du Portugal). Dans le but d’identifier les facteurs déclenchants associés à l’IADFs, une nouvelle classification a été proposée pour l’IADFs chez Pinus pinea : Type E (cellules ressemblant à du bois final dans le bois initial); Type E+ (cellules de transition entre bois initial et bois final); Type L (cellules ressemblant à du bois initial dans du bois final) et Type L+ (cellules ressemblant à du bois initial entre bois final et bois initial du prochain cerne). Les analyses des fonctions de réponse ont montré que la croissance radiale de Pinus pinea était fortement corrélée avec les précipitations dans le sud-ouest du Portugal. La réponse climatique de Pinus pinea a été plus forte dans la zone intérieure où la sécheresse d’été est plus sévère, les températures hivernales plus basses et où les sols ont une plus faible capacité de rétention de l’eau, comparativement aux zones côtières. IADFs a été fréquent chez Pinus pinea et la majorité d’IADFs a été observée dans le bois final. La présence d’IADFs a été corrélée avec des fluctuations des paramètres climatiques pendant la saison de croissance. L’IADFs type E+ était lié avec des événements pluvieux en début d’été. L’IADFs type L et l’IADFs type L+ étaient associés avec des précipitations supérieures à la moyenne en début d’automne.

References

  1. Abe H., Nakai T., Effect of the water status within a tree on tracheid morphogenesis in Cryptomeria japonica D. Don, Trees 14 (1999) 124–129.

    Google Scholar 

  2. Abe H., Nakai T., Utsumi Y., Kagawa A., Temporal water deficit and wood formation in Cryptomeria japonica, Trees 23 (2003) 859–863.

    Google Scholar 

  3. Antonova G.F., Stasova V.V., Effects of environmental factors on wood formation in larch (Larix sibirica Ldb.) stems, Trees 11 (1997) 462–468.

    Google Scholar 

  4. Borghetti M., Cinnirella S., Magnani F., Saracino A., Impact of long-term drought on xylem embolism and growth in Pinus halepensis Mill., Trees 12 (1998) 187–195.

    Google Scholar 

  5. Bouriaud O., Leban J.M., Bert D., Deleuze C., Intra-annual variations in climate influence growth and wood density of Norway spruce, Tree Physiol. 25 (2005) 651–660.

    PubMed  CAS  Google Scholar 

  6. Box G.E.P., Jenkins G.M., Time series analysis: forecasting and control, Holden-Day, San Francisco, 1976.

    Google Scholar 

  7. Briffa K.R., Cook E.R., Methods of response function analysis, in: Cook E.R., Kairiukstis L.A. (Eds.), Methods of dendrochronology: applications in the environmental sciences, Kluwer Academic Publishers, Boston, 1990, pp. 240–247.

    Google Scholar 

  8. Briffa K.R., Jones P.D., Basic chronology statistics and assessment, in: Cook E.R., Kairiukstis L.A. (Eds.), Methods of dendrochronology: applications in the environmental sciences, Kluwer Academic Publishers, Boston, 1990, pp. 137–152.

    Google Scholar 

  9. Brunstein F.C., Climatic significance of the bristlecone pine late-wood frost-ring record at Almagre Mountain, Colorado, USA, Arct. Alp. Res. 28 (1996) 65–76.

    Article  Google Scholar 

  10. Camarero J.J., Guerrero-Campo J., Gutiérrez E., Tree-ring growth and structure of Pinus uncinata and Pinus sylvestris in the Central Spanish Pyrenees, Arct. Alp. Res. 30 (1998) 1–10.

    Article  Google Scholar 

  11. Cherubini P., Piussi P., Schweingruber F.H., Spatiotemporal growth dynamics and disturbances in a subalpine spruce forest in the Alps: A dendroecological reconstruction, Can. J. For. Res. 26 (1996) 991–1001.

    Article  Google Scholar 

  12. Cherubini P., Gartner B.L., Tognetti R., Bräker O.U., Schoch W., Innes J.L., Identification, measurement and interpretation of tree rings in woody species from Mediterranean climates, Biol. Rev. 78 (2003) 119–148.

    Article  PubMed  Google Scholar 

  13. Cook E.R., A time series analysis approach to tree ring standardization, Ph.D. dissertation, University of Arizona, Tucson, 1985.

    Google Scholar 

  14. Cook E.R., The decomposition of tree-ring series for environmental studies, Tree-Ring Bull. 47 (1987) 37–59.

    Google Scholar 

  15. Cook E.R., Peters K., The smoothing spline: A new approach to standardizing forest interior tree-ring width series for dendroclimatic studies, Tree-Ring Bull. 41 (1981) 45–55.

    Google Scholar 

  16. Cook E.R., Shiyatov S., Mazepa V., Estimation of the mean chronology, in: Cook E.R., Kairiukstis L.A. (Eds.), Methods of dendrochronology: applications in the environmental sciences, Kluwer Academic Publishers, Boston, 1990, pp. 123–132.

    Google Scholar 

  17. Cook E.R., Briffa K.R., Shiyatov S., Mazepa V., Tree-ring standard-ization and growth-trend estimation, in: Cook E.R., Kairiukstis L.A. (Eds.), Methods of dendrochronology: applications in the environmental sciences, Kluwer Academic Publishers, Boston, 1990, pp. 104–123.

    Google Scholar 

  18. Creber G.T., Chaloner W.G., Influence of environmental factors on the wood structure of living and fossil trees, Bot. Rev. 50 (1984) 357–448.

    Article  Google Scholar 

  19. Cregg B.M., Dougherty P.M., Hennessey T.C., Growth and wood quality of young loblolly-pine trees in relation to stand density and climatic factors, Can. J. For. Res. 18 (1988) 851–858.

    Article  Google Scholar 

  20. Delwaide A., Filion L., Payette S., Spatiotemporal distribution of light rings in subarctic black spruce, Quebec, Can. J. For. Res. 21 (1991) 1828–1832.

    Article  Google Scholar 

  21. Domec J.-C., Gartner B.L., How do water transport and water storage differ in coniferous earlywood and latewood? J. Exp. Bot. 53 (2002) 2369–2379.

    Article  PubMed  CAS  Google Scholar 

  22. Douglass A.E., Climatic cycles and tree-growth. Vol. II. A study of the annual rings of trees in relation to climate and solar activity, Carnegie Inst. Wash. Publ. 289 (1928) 1–166.

    Google Scholar 

  23. Fritts H.C., Tree rings and climate, Academic Press, London, 1976.

    Google Scholar 

  24. Fritts H.C., PRECON version 5.17b, http://www.ltrr.arizona.edu/ webhome/hal/dlprecon.html, 1999.

  25. Fritts H.C., Smith D.G., Cardis J.W., Budelsky C.A., Tree-ring characteristics along a vegetation gradient in Northern Arizona, Ecology 46 (1965) 393–401.

    Article  Google Scholar 

  26. Glock W.S., Tree growth II. Growth rings and climate, Bot. Rev. 21 (1955) 73–188.

    Article  Google Scholar 

  27. Guiot J., Methods of calibration, in: Cook E.R., Kairiukstis L.A. (Eds.), Methods of Dendrochronology: Applications in the Environmental Sciences, Kluwer Academic Publishers, Boston, 1990, pp. 165–178.

    Google Scholar 

  28. Guiot J., The bootstrapped response function, Tree-Ring Bull. 51 (1991) 39–41.

    Google Scholar 

  29. Holmes R.L., Computer-assisted quality control in tree-ring dating and measurement, Tree-Ring Bull. 43 (1983) 69–75.

    Google Scholar 

  30. Holmes R.L., Dendrochronology program library, Tucson, Laboratory of Tree-ring Research, University of Arizona, 1994.

    Google Scholar 

  31. Jayawickrama K.J.S., McKeand S.E., Jett J.B., Wheeler E.A., Date of earlywood-latewood transition in provenances and families of loblolly pine, and its relationship to growth phenology and juvenile wood specific gravity, Can. J. For. Res. 27 (1997) 1245–1253.

    Article  Google Scholar 

  32. Kozlowski T.T., Growth and development of trees. Vol. II, Academic Press, New York, 1971.

    Google Scholar 

  33. Kozlowski T.T., Kramer P.J., Pallardy S.G., The physiological ecology of woody plants, Academic Press, New York, 1991.

    Google Scholar 

  34. Kuo M.-L., McGinnes E.A., Variation of anatomical structure of false rings in Eastern red cedar, Wood Sci. 5 (1973) 205–210.

    Google Scholar 

  35. LaMarche V.C., Hirschboeck K.K., Frost rings in trees as records of major volcanic-eruptions, Nature 307 (1984) 121–126.

    Article  Google Scholar 

  36. Liang C., Filion L., Cournoyer L., Wood structure of biotically and climatically induced light rings in eastern larch (Larix laricina), Can. J. For. Res. 27 (1997) 1538–1547.

    Article  Google Scholar 

  37. Liphschitz N., Lev-Yadun S., Cambial activity of evergreen and seasonal dimorphics around the Mediterranean, IAWA Bull. 7 (1986) 145–153.

    Google Scholar 

  38. Liphschitz N., Lev-Yadun S., Rosen E., Waisel Y., The annual rhythm of activity of the lateral meristems (cambium and phellogen) in Pinus halepensis Mill, and Pinus pinea L., IAWA Bull. 5 (1984) 263–274.

    Google Scholar 

  39. Loustau D., Berbigier P., Roumagnac P., Arruda-Pacheco C., David J.S., Ferreira M.I., Pereira J.S., Tavares R., Transpiration of a 64-year-old maritime pine stand in Portugal. 1. Seasonal course of water flux through maritime pine, Oecologia 107 (1996) 33–42.

    Article  Google Scholar 

  40. Masiokas M., Villalba R., Climatic significance of intra-annual bands in the wood of Nothofagus pumilio in southern Patagonia, Trees 18 (2004) 696–704.

    Article  Google Scholar 

  41. Nicault A., Rathgeber C., Tessier L., Thomas A., Observations sur la mise en place du cerne chez le pin d’Alep (Pinus halepensis Mill.): confrontation entre les mesures de croissance radiale, de densité et les facteurs climatiques, Ann. For. Sci. 58 (2001) 769–784.

    Article  Google Scholar 

  42. Oliveras I., Martínez-Vilalta J., Jimenez-Ortiz T., Lledó M.J., Escarré A., Piñol J., Hydraulic properties of Pinus halepensis, Pinus pinea and Tetraclinis articulata in a dune ecosystem of Eastern Spain, Plant Ecol. 169 (2003) 131–141.

    Article  Google Scholar 

  43. Osborn T.J., Briffa K.R., Jones P.D., Adjusting variance for samplesize in tree-ring chronologies and other regional mean time series, Dendrochronologia 15 (1997) 89–99.

    Google Scholar 

  44. Priya P.B., Bhat K.M., Wood anatomical changes in juvenile teak due to insect defoliation, IAWA 18 (1997) 311–317.

    Google Scholar 

  45. Priya P.B., Bhat K.M., False ring formation in teak (Tectona grandis L.f.) and the influence of environmental factors, For. Ecol. Manage. 108 (1998) 215–222.

    Article  Google Scholar 

  46. Rigling A., Brăker O., Schneiter G., Schweingruber F., Intra-annual tree-ring parameters indicating differences in drought stress of Pinus sylvestris forests within the Erico-Pinion in the Valais (Switzerland), Plant Ecol. 163 (2002) 105–121.

    Article  Google Scholar 

  47. Rigling A., Waldner P.O., Forster T., Brăker O.U., Pouttu A., Ecological interpretation of tree-ring width and intraannual density fluctuations in Pinus sylvestris on dry sites in the central Alps and Siberia, Can. J. For. Res. 31 (2001) 18–31.

    Article  Google Scholar 

  48. Rinn F., TSAP-Win — Time series analysis and presentation dendrochronology and related applications, Frank Rinn, Heidelberg, 2003.

    Google Scholar 

  49. Rozas V., Dendrochronology of pedunculate oak (Quercus robur L.) in an old-growth pollarded woodland in northern Spain: tree-ring growth responses to climate, Ann. For. Sci. 62 (2005) 209–218.

    Article  Google Scholar 

  50. Rozenberg P., Van Loo J., Hannrup B., Grabner M., Clonal variation of wood density record of cambium reaction to water deficit in Picea abies (L.) Karst, 59 (2002) 533–540.

    Google Scholar 

  51. Schulman E., Classification of false annual rings in Monterey pine, Tree-ring Bull. 4 (1938) 4–7.

    Google Scholar 

  52. Schweingruber F.H., Tree rings and environment — Dendroecology, Haupt, Bern, 1996.

    Google Scholar 

  53. Serre-Bachet F., Tessier L., Response function analysis for ecological study, in: Cook E.R., Kairiukstis L.A. (Eds.), Methods of dendrochronology: applications in the environmental sciences, Kluwer Academic Publishers, Boston, 1990, pp. 247–258.

    Google Scholar 

  54. Stokes M.A., Smiley T.L., An introduction to tree-ring dating, University of Chicago Press, Chicago, 1968.

    Google Scholar 

  55. Tyree M.T., Ewers F.W., The hydraulic architecture of trees and other woody-plants, New Phytol. 119 (1991) 345–360.

    Article  Google Scholar 

  56. Tyree M.T., Zimmermann M.H., Xylem structure and the ascent of sap, Springer Verlag, Berlin, Germany, 2002.

    Google Scholar 

  57. Villalba R., Veblen T.T., A tree-ring record of dry spring wet summer events in the forest-steppe ecotone, northern Patagonia, Argentina, in: Dean J.S., Meko D.M., Swetnam T.W (Eds.), Tree Rings, Environment and Humanity, Radiocarbon, Spec. Issue, 1996, pp. 107–116.

  58. Wang L., Payette S., Begin Y., Relationships between anatomical and densitometric characteristics of black spruce and summer temperature at tree line in northern Quebec, Can. J. For. Res. 32 (2002) 477–486.

    Article  Google Scholar 

  59. Wigley T.M.L., Briffa K.R., Jones P.D., On the average value of correlated time series, with applications in dendroclimatology and hydrometeorology, J. Clim. Appl. Met. 23 (1984) 201–213.

    Article  Google Scholar 

  60. Wimmer R., Wood anatomical features in tree-rings as indicators of environmental change, Dendrochronologia 20 (2002) 21–36.

    Article  Google Scholar 

  61. Wimmer R., Grabner M., Effects of climate on vertical resin duct density and radial growth of Norway spruce Picea abies (L.) Karst, Trees 11 (1997) 271–276.

    Google Scholar 

  62. Wimmer R., Strumia G., Holawe F., Use of false rings in Austrian pine to reconstruct early growing season precipitation, Can. J. For. Res. 30 (2000) 1691–1697.

    Article  Google Scholar 

  63. Yamaguchi D.K., A simple method for cross-dating increment cores from living trees, Can. J. For. Res. 21 (1991) 414–416.

    Article  Google Scholar 

  64. Yamaguchi D.K., Filion L., Savage M., Relationship of temperature and light ring formation at subarctic treeline and implications for climate reconstruction, Quat. Res. 39 (1993) 256–262.

    Article  Google Scholar 

  65. Zahner R., Water deficits and growth of trees, in: Kozlowski T.T. (Ed.), Water deficits and plant growth, Vol. II, Academic Press, London, 1968, pp. 191–254.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Filipe Campelo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Campelo, F., Nabais, C., Freitas, H. et al. Climatic significance of tree-ring width and intra-annual density fluctuations in Pinus pinea from a dry Mediterranean area in Portugal. Ann. For. Sci. 64, 229–238 (2007). https://0-doi-org.brum.beds.ac.uk/10.1051/forest:2006107

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://0-doi-org.brum.beds.ac.uk/10.1051/forest:2006107