Skip to main content
  • Original Article
  • Published:

Growth, physiology, and nutrient retranslocation in nitrogen-15 fertilized Quercus rubra seedlings

Croissance, échanges gazeux et réponses nutritionnelles de jeunes semis de Quercus rubra soumis à une fertilisation par (15NH4)2SO4

Abstract

We evaluated gas exchange, chlorophyll index (CI) using SPAD-502 chlorophyll meter, and leaf nutritional responses in one-year-old northern red oak (Quercus rubra L.) container seedlings transplanted into control (unfertilized) or fertilized (0.86 g N plant−1) sand culture and grown in a greenhouse for 90 days. We labeled current nitrogen (N) uptake with (15NH4)2SO4 and directly quantified proportional contributions of N derived from fertilizer (NF) compared with retranslocation or N derived from plant (NP) in leaf growth of red oak seedlings. NF met a greater N demand in leaf growth of fertilized plants while unfertilized seedlings relied entirely on NP for their leaf growth. Fertilization increased leaf dry mass by 67% and new stem dry mass by 253% 90 days after transplanting compared to control seedlings. Specific leaf area (SLA) was not significantly altered but CI increased 90 days after transplanting. Higher leaf N concentration and content in fertilized compared with control seedlings was linked to greater chlorophyll concentrations in the former plants. The higher coefficient of determination (r 2 = 0.72) noted between leaf N concentrations and CI suggests that the SPAD meter could be a useful tool for assessing leaf N status in northern red oak seedlings. Fertilized seedlings exhibited higher net assimilation, stomatal conductance, and transpiration rates compared with controls. Increased seedling growth in response to fertilization was related to maintenance of higher gas exchange and greater nutrient uptake, which could improve outplanting success.

Résumé

Nous avons estimé les échanges gazeux foliaires, un index de teneurs en chlorophylles (IC) avec un chlorophylle-mètre SPAD-502 et les teneurs en nutriments dans les feuilles de jeunes plants de chêne rouge d’Amérique (Quercus rubra L.) âgés d’un an. Les plants ont été transplantés dans du substrat sableux non fertilisé (témoins) ou fertilisé avec 0.86 g N par plante, et cultivés pendant 90 jours sous serre. L’azote apporté par la fertilisation était marqué avec (15NH4)2SO4 et nous avons directement quantifié les contributions à la croissance foliaire de N apporté par la fertilisation (NF) par rapport à celle de N remobilisé depuis les pools de réserve de la plante (NP). NF constituait la fraction la plus importante d’azote foliaire de plants fertilisés, alors que l’azote foliaire des plants non fertilisés était exclusivement constitué de NP. La fertilisation s’est traduite par une augmentation, par rapport aux plantes témoins, de 67 % de la biomasse foliaire et de 253 % de la biomasse de tiges nouvellement formées 90 jours après la transplantation. La surface spécifique des feuilles n’était pas affectée par la fertilisation alors que CI avait significativement augmenté. Des teneurs plus élevées en N foliaire en comparaison des témoins, étaient donc liées à des concentrations plus fortes en chlorophylles. Le coefficient de détermination élevé (r 2 = 0.72) des relations entre concentration de N et CI montrent que le SPAD-502 pourrait être un instrument utile pour l’évaluation des teneurs en N dans des semis de chêne rouge. Les semis fertilisés présentaient également des niveaux d’assimilation nette de CO2, de conductance stomatique et de transpiration plus élevés que les plants témoins. La croissance plus forte des semis en réponse à la fertilisation était liée à des échanges gazeux plus actifs et une plus forte assimilation de nutriments, ce qui peut augmenter les chances de succès à la transplantation en forêt.

References

  1. Apostol K.G., Zwiazek J.J., Hypoxia affects root sodium and chloride concentrations and alters water conductance in salt-treated jack pine (Pinus banksiana) seedlings, Trees 17 (2003) 251–257.

    Google Scholar 

  2. Bauerle W.L., Wang G.G., Bowden J.D., Hong C.M., An analysis of ecophysiological responses to drought in American chestnut, Ann. For. Sci. 63 (2006) 833–842.

    Article  Google Scholar 

  3. Brady N.C., Weil R.R., The nature and properties of soils, 13th ed, Prentice Hall, New Jersey, 2002.

    Google Scholar 

  4. Brockley R.P., The effects of fertilization on early growth of planted seedlings — a problem analysis, Forestry Canada, Ottawa Ont. For. Resour. Dev. Agree. Re 0835-0752:011, Victoria, British Columbia, 1988, pp. 16.

  5. Burdett A.N., Herring L.J., Thompson C.F., Early growth of planted spruce, Can. J. For. Res. 14 (1984) 644–651.

    Article  Google Scholar 

  6. Chang S.X., Robinson D.J., Nondestructive and rapid estimation of hardwood foliar nitrogen status using the SPAD-502 chlorophyll meter, For. Ecol. Manage. 181 (2003) 331–338.

    Article  Google Scholar 

  7. Chapin F.S. III., The mineral nutrition of wild plants, Ann. Rev. Ecol. Syst. 11 (1980) 233–260.

    Article  CAS  Google Scholar 

  8. Chapin F.S. III., Bloom A.J., Field C.B., Waring R.W., Plant responses to multiple environmental factors, BioScience 37 (1987) 49–57.

    Article  Google Scholar 

  9. Chapman S.C., Barreto H.J., Using a chlorophyll meter to estimate specific leaf nitrogen of tropical maize during vegetative growth, Agron. J. 89 (1997) 557–562.

    Article  Google Scholar 

  10. Clarkson D.T., Carvajal M., Henzler T., Waterhouse R.N., Smyth A.J., Cooke D.T., Steudle E., Root hydraulic conductance: diurnal aquaporin expression and the effects of nutrient stress, J. Exp. Bot. 51 (2000) 61–70

    Article  PubMed  CAS  Google Scholar 

  11. Coleman M.D., Dickson R.E., Isebrands J.G., Growth and physiology of aspen supplied with different fertilizer addition rates, Physiol. Plant. 103 (1998) 513–526.

    Article  CAS  Google Scholar 

  12. Coll L., Messier C., Delagrange S., Berninger F., Growth, allocation and leaf gas exchange of hybrid poplar plants in their establishment phase on previously forested sites: effect of different vegetation management techniques, Ann. For. Sci. 64 (2007) 275–285.

    Article  Google Scholar 

  13. Dong S., Cheng L., Scagel C.F., Fuchigami L.H., Nitrogen mobilization, nitrogen uptake and growth of cuttings obtained from poplar stock plants grown in different N regimes and sprayed with urea in autumn, Tree Physiol. 24 (2004) 355–359.

    PubMed  CAS  Google Scholar 

  14. Dyckmans J., Flessa H., Partitioning of remobilized N in young beech (Fagus sylvatica L.) is not affected by elevated [CO2], Ann. For. Sci. 62 (2005) 285–288.

    Article  CAS  Google Scholar 

  15. Epstein E., Bloom A.J., Mineral nutrition of plants: principles and perspectives, 2nd ed., John Wiley and Sons Inc., NY, 2004.

    Google Scholar 

  16. Evans J.R., Developmental constraints on photosynthesis: effects of light and nutrition, in: Baker N.R. (Ed.), Photosynthesis and the environment, Kluwer, Dordrecht, 1996, pp. 281–304.

    Google Scholar 

  17. Evans J.R., Photosynthesis and nitrogen relationships in leaves of C3 plants, Oecologia 78 (1989) 9–19.

    Article  Google Scholar 

  18. Freeden A.L., Gamon J.A., Field C.B., Responses of photosynthesis and carbohydrate-partitioning to limitations in nitrogen and water availability in field-grown sunflower, Plant Cell Environ. 14 (1991) 963–970.

    Article  Google Scholar 

  19. Gough C.M., Seiler J.R., Maier C.A., Short-term effects of fertilization on loblolly pine (Pinus taeda L.) physiology, Plant Cell Environ. 27 (2004) 876–886.

    Article  CAS  Google Scholar 

  20. Haase D.L., Rose R., Vector analysis and its use for interpreting plant nutrient shifts in response to silvicultural treatments, For. Sci. 41 (1995) 54–66.

    Google Scholar 

  21. Hawkins B.J., Burgess D., Mitchell A.K., Growth and nutrient dynamics of western hemlock with conventional or exponential greenhouse fertilization and planting in different fertility conditions, Can. J. For. Res. 35 (2005) 1002–1016.

    Article  CAS  Google Scholar 

  22. Hawkins B.J., Kiiskila S.B.R., Henry G., Biomass and nutrient allocation in Douglas-fir and amabalis fir seedlings: influence of growth rate and nutrition, Tree Physiol. 18 (1998) 803–810.

    PubMed  Google Scholar 

  23. Hechler W.D., Dawson J.O., DeLucia E.H., Stomatal conductance of seedlings of three oak species subjected to nitrogen fertilization and drought treatments, in: McCormick L.H., Gottschalk K.W. (Eds.), Proc. 8th Central Hardwood Forest Conference, USDA Forest Service Gen. Tech. Report NE — 148, 1991, pp. 188–193.

  24. Hensley D.L., McNeil R.E., Sundheim R., Management influences growth of transplanted Magnolia grandiflora, J. Arboric. 14 (1988) 204–207.

    Google Scholar 

  25. Jacobs D.F., Ross-Davis A., Davis A.S., Establishment success of conservation tree plantations in relation to silvicultural practices in Indiana, USA New For. 28 (2004) 23–26.

    Google Scholar 

  26. Jacobs D.F., Salifu K.F., Scifert J.R., Growth and nutritional response of hardwood seedlings to controlled-release fertilization at outplanting, For. Ecol. Manage. 214 (2005) 28–39.

    Article  Google Scholar 

  27. Jose S., Gillespie A.R., Leaf area-productivity relationships among mixedspecies hardwood forest communities of the Central Hardwood Region, For. Sci. 43 (1997) 56–64.

    Google Scholar 

  28. Kleiner K.W., Abrams M.D., Schultz J.C., The impact of water and nutrient deficiencies on the growth, gas exchange, and water relations of red oak and chestnut oak, Tree Physiol. 11 (1992) 271–287.

    PubMed  CAS  Google Scholar 

  29. Kozlowski T.T., Soil moisture and absorption of water by tree roots, J. Arboric. 13 (1987) 39–46.

    Google Scholar 

  30. Landis T.D., Mineral nutrition as an index of seedling quality, in: Duryea M.L. (Ed.), Evaluating seedling quality: Principles, procedures, and predictive abilities of major tests, For. Res. Lab., Oregon State Univ., Corvallis, OR, 1985, pp. 29–48.

    Google Scholar 

  31. Landsberg J.J., Physiological ecology of forest production, Academic Press, London, UK, 1986.

    Google Scholar 

  32. Lawlor D.W., Photosynthesis: molecular, physiological and environment processes, 3rd ed. Bios Scientific Publishers, Oxford, UK, 2001.

    Google Scholar 

  33. Luxmoore R.J., Cunningham M., Mann L.K., Tjoelker M.G., Urea fertilization effects of nutrient uptake and growth of Platanus occidentalis during plantation establishment, Trees 7 (1993) 250–257.

    Article  Google Scholar 

  34. McCrady R.L., Jokela E.J., Canopy dynamics, light interception and radiation use efficiency of selected loblolly pine families, For. Sci. 4 (1998) 64–72.

    Google Scholar 

  35. Millard P., Proe M.F., Nitrogen uptake, partitioning and internal cycling in Picea sitchensis (Bong.) Carr. as influenced by nitrogen supply, New Phytol. 125 (1993) 113–119.

    Article  CAS  Google Scholar 

  36. Mooney H.A., Gulmon S.L., Environmental and evolutionary constraints of the photosynthetic characteristics of higher plants, in: Solbrig O.T., Jain S., Johjson G.B., Raven P.H. (Eds.), Topics in plant population biology, Columbia University Press, New York, 1979, pp. 316–337.

    Google Scholar 

  37. Murthy R., Dougherty P.M., Zarnoch S.J., Allen H.L., Effects of carbon dioxide, fertilization, and irrigation on the photosynthetic capacity of loblolly pine trees, Tree Physiol. 16 (1996) 537–546.

    PubMed  Google Scholar 

  38. Nambiar E.K.S., Do nutrients retranslocate from fine roots, Can. J. For. Res. 17 (1987) 913–918.

    Article  Google Scholar 

  39. Nambiar E.K.S., Fife D.N., Nutrient retranslocation in temperate conifers, Tree Physiol. 9 (1991) 185–207.

    CAS  Google Scholar 

  40. Osman A.M., Goodman P.J., Cooper J.P., The effects of nitrogen, phosphorus and potassium on rates of growth and photosynthesis of wheat, Photosynthetica 11 (1977) 66–75.

    CAS  Google Scholar 

  41. Parelle J., Roudaut J.P., Ducrey M., Light acclimation and photosynthetic response of beech (Fagus sylvatica L.) saplings under artificial shading or natural Mediterranean conditions, Ann. For. Sci. 63 (2006) 257–266.

    Article  Google Scholar 

  42. Pierce L.L., Running S.W., Walker J., Regional-scale relationships of leaf area index to specific leaf area and leaf nitrogen content, Ecol. Appl. 4 (1994) 313–321.

    Article  Google Scholar 

  43. Pugnaire F.I., Chapin F.S. III., Controls over nutrient resorption from leaves of evergreen Mediterranean species, Ecol. 74 (1993) 124–129.

    Article  Google Scholar 

  44. Radwan M.A., Effect of forest floor on growth and nutrition of Douglas-fir and western hemlock seedlings with and without fertilizer, Can. J. For. Res. 22 (1992) 1222–1229.

    Article  CAS  Google Scholar 

  45. Reddy G.B., Reddy K.R., Fate of nitrogen-15 enriched ammonium nitrate applied to corn, Soil Sci. Soc. Am. J. 57 (1993) 111–115.

    Article  Google Scholar 

  46. Royo A., Gil L., Pardos J.A., Effect of water stress conditioning on morphology, physiology and field performance of Pinus halepensis Mill. seedlings, New For. 21 (2001) 127–140.

    Article  Google Scholar 

  47. Salifu K.F., Jacobs D.F., Characterizing fertility targets and multielement interactions in nursery culture of Quercus rubra seedlings, Ann. For. Sci. 63 (2006) 231–237.

    Article  Google Scholar 

  48. Salifu K.F., Timmer V.R., Nitrogen retranslocation response of young Picea mariana to nitrogen-15 supply, Soil Sci. Soc. Am. J. 67(2003) 309–317.

    Article  CAS  Google Scholar 

  49. Salifu K.F., Timmer V.R., Nutrient retranslocation response of Picea marina seedlings to nitrogen supply, Soil Sci. Soc. Am. J. 65 (2001) 905–913.

    Article  CAS  Google Scholar 

  50. Samuelson L.J., Effects of nitrogen on leaf physiology and growth of different families of loblolly and slash pine, New For. 19 (2000) 95–107.

    Article  Google Scholar 

  51. Sheriff D.W., Roles of carbon gain and allocation in growth at different nitrogen nutrition in Eucalyptus camaldulensis and Eucalyptus globulus seedlings, Aust. J. Plant Physiol. 19 (1992) 637–652.

    Article  CAS  Google Scholar 

  52. Struve D.K., Joly R.J., Transplanted red oak seedlings mediate transplant shock by reducing leaf surface area and altering carbon allocation, Can. J. For. Res. 22 (1992) 1441–1448.

    Article  Google Scholar 

  53. Taiz L., Zeigler E., Plant Physiology, 3rd ed., Sinauer Associates, Sunderland, Massachusetts, USA, 2002.

    Google Scholar 

  54. Timmer V.R., Interpretation of seedling analysis and visual symptoms, in: van den Driessche R. (Ed.), Mineral nutrition of conifer seedlings, CRC Press, Boca Raton, FL, USA, 1991, pp. 113–114.

    Google Scholar 

  55. Timmer V.R., Armstrong G., Growth and nutrition of containerized Pinus resinosa seedlings at varying moisture regimes, New For. 3 (1989) 171–180.

    Article  Google Scholar 

  56. Van den Berg A.K., Perkins T.D., Evaluation of a portable chlorophyll meter to estimate chlorophyll and nitrogen contents in sugar maple (Acer saccharum March.) leaves, For. Ecol. Manage. 200 (2004) 113–117.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglass F. Jacobs.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salifu, K.F., Apostol, K.G., Jacobs, D.F. et al. Growth, physiology, and nutrient retranslocation in nitrogen-15 fertilized Quercus rubra seedlings. Ann. For. Sci. 65, 101 (2008). https://0-doi-org.brum.beds.ac.uk/10.1051/forest:2007073

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://0-doi-org.brum.beds.ac.uk/10.1051/forest:2007073