Skip to main content
  • Original Article
  • Published:

The role of ectomycorrhizal fungi in alleviating pine decline in semiarid sandy soil of northern China: an experimental approach

Le rôle des champignons ectomycorrhiziens dans la réduction du dépérissement du pin sur sols sableux semi-arides du nord de la Chine: une approche expérimentale

Abstract

The decline of Mongolian pine (Pinus sylvestris var. mongolica) trees on sandy land in northern China has caused serious ecological concerns. Mongolian pine is an ectomycorrhizal fungus (ECM)-dependent species. Three ECM species (Boletus sp., Lactarius deliciosus and L.sp.) were collected from Mongolian pine plantation stands to test their beneficial effects on Mongolian pine seedlings and their responses to environmental factors such as pH, drought stress and temperature. The results indicated that ECM inoculation significantly increased the rate of ECM colonization and the length of seedling shoots. The three ECM could grow in a pH range from 4 to 7, but did not grow under heavy drought stress (−1.53 MPa). High temperatures (over 37 °C) caused death of ECM. When related to soil pH, soil water content and temperature in the Mongolian pine plantations, water conditions and temperature were unfavorable for ECM growth in surface soil, but suitable in deeper soil. Therefore, it was concluded that the failure of natural regeneration in Mongolian pine plantations might be influenced by the lack of ECM in the surface soil because of high temperatures causing ECM death. Moreover, the majority of the root area is distributed in deeper soil, which alleviates the stresses on ECM development and arrests pine decline; this is beneficial for tree growth.

Résumé

Le dépérissement du Pin de Mongolie (Pinus sylvestris var. mongolica) sur les terres sableuses du nord de la Chine a causé de graves inquiétudes écologiques. Le Pin de Mongolie est une espèce dépendante de champignons ectomycorrhiziens (ECM). Trois espèces de champignons ectomycorrhiziens ont été récoltés (Boletus sp., Lactaria delicious et L. sp.) dans des plantations de Pin de Mongolie pour tester leur effet bénéfique sur des semis de Pin de Mongolie et leur réponse aux facteurs environnementaux tels que pH, stress hydrique et température. Les résultats indiquent que l’inoculation d’ ECM accroît significativement le taux de colonisation d’ ECM et la longueur des pousses des semis. Les trois ECM peuvent croître avec une gamme de pH allant de 4 à 7, mais ne peuvent pas se développer sous un stress hydrique important (−1,53 MPa). Des températures élevées (au dessus de 37 °C) causent la mort de ECM. Relativement au pH du sol, la teneur en eau du sol et la température dans les plantations de Pin de Mongolie, les conditions hydriques et la température étaient défavorables pour la croissance d’ ECM à la surface du sol, mais étaient appropriées dans un sol plus profond. Par conséquent, il a été conclu que l’échec de la régénération naturelle dans les plantations de Pin de Mongolie aurait pu être influencé par un manque d’ ECM en surface du sol car les températures élevées causent la mort des ECM. En outre, la majorité de la surface racinaire est répartie dans la profondeur du sol, ce qui réduit les contraintes au développement des ECM et arrête le dépérissement des pins, et est favorable à la croissance de l’arbre.

References

  1. Allen M.F., 1991. The Ecology of Mycorrhizae, Cambridge, Cambridge University Press.

    Google Scholar 

  2. Baum C., Stetter U., Makeschin F., 2002. Growth response of Populus trichocarpa to inoculation by the ectomycorrhizal fungus Laccaria laccata in a pot and a field experiment, For. Ecol. Manage. 163: 1–8.

    Article  Google Scholar 

  3. Bi G.C., Guo X.Z., Zang M., 1989. Influence of temperature on colony growth of ectomycorrhizal fungi in pure culture, For. Res. 247–253 (in Chinese).

  4. Brundrett M., Malajczuk N., Gong M.Q., Xu D.Q., Snelling S., Dell B., 2005. Nursery inoculation of Eucalyptus seedlings in Western Australia and Southern China using spores and mycelial inoculum of diverse ectomycorrhizal fungi from different climatic regions, For. Ecol. Manage. 209: 193–205.

    Article  Google Scholar 

  5. Chang X.L., Zhao W.Z., 1990. Study on moisture physiology of Pinus sylvestris var. mongolica and Populus simonii and water condition of woodland, Chin. J. Desert. 10: 18–24 (in Chinese with English abstract).

    Google Scholar 

  6. Chambel M.R., Climent J., Alfa R., 2007. Divergence among species and populations of Mediterranean pines in biomass allocation of seedlings grown under two watering regimes, Ann. For. Sci. 64: 87–97.

    Article  Google Scholar 

  7. Duponnois R., Founouneb H., Masseb D., Pontanierc R., 2005. Inoculation of Acacia holosericea with ectomycorrhizal fungi in a semiarid site in Senegal: growth response and influences on the mycorrhizal soil infectivity after 2 years plantation, For. Ecol. Manage. 207: 351–362.

    Article  Google Scholar 

  8. Fisher R. F., Binkley D., 2000. Ecology and Management of Forest Soils. John Wiley & Sons (Asia) Pte. Ltd., 3rd ed.

  9. Garbaye J., Churin J.L., 1997. Growth stimulation of young oak plantations inoculated with the ectomycorrhizal fungus Paxillus involutus with special reference to summer drought, For. Ecol. Manage. 98: 221–228.

    Article  Google Scholar 

  10. Giltrap N.J., Lewis D.H., 1981. Inhibition of growth of ectomycorrhizal fungi in culture by phosphate, New Phytol. 87: 669–675.

    Article  CAS  Google Scholar 

  11. Guo X.Z., Bi G.C., 1989. Forest mycorrhiza and its applied technology, Beijing, China Forestry Publishing House Press (in Chinese).

    Google Scholar 

  12. Han G.Y., Qi Y.C., Liu C., Zhou Y.Z., 1993. Effect of temperature and pH on mycorrhizal fungus growth, China J. Ecol. 12: 15–19 (in Chinese).

    Google Scholar 

  13. Hung L., Tappe J.M., 1983. Growth variation between and within species of ectomycorrhizal fungi in response to pH in vitro, Mycologia 75: 234–241.

    Article  Google Scholar 

  14. Jefferies R.L. Maron J.L., 1997. The embarrassment of riches: atmospheric deposition of nitrogen and community and ecosystem processes, Trends Ecol. Evol. 12: 74–78.

    Article  PubMed  CAS  Google Scholar 

  15. Jiang F.Q., Zhu J.J., 1993. Development and utilization of sandland from ecological view, Chin. J. Ecol. 12: 44–46 (in Chinese with English abstract).

    Google Scholar 

  16. Jiao S.R., 1989. Structure and function of Mongolian pine plantation for sand fixation in Zhanggutai, Liaoning, Liaoning Science and Technology Press (in Chinese).

    Google Scholar 

  17. Jiao S.R., 2001. Report on the causes of the early decline of Pinus sylvestris var. mongolica shelterbelt and its preventative and control measures in Zhanggutai of Liaoning Province, Sci. Silv. Sini. 37: 131–138 (in Chinese with English abstract).

    Google Scholar 

  18. Johansson J.F., 2002. Belowground ectomycorrhizal community structure along a local nutrient gradient in a boreal forest in Northern Sweden. Swed, Univ. Afric. Sci. Uppsala, pp. 1–26.

  19. Kang H.Z., Zhu J., Xu M.L., 2007. Study on water physiological properties of the artificially-planned saplings of Pinus sylvestris var. mongolica in the Horqin Sandland, Arid Zone Res. 24: 15–22 (in Chinese with English abstract).

    Google Scholar 

  20. Li W.H., 2004. Degradation and restoration of forest ecosystems in China, For. Ecol. Manage. 201: 33–41.

    Article  Google Scholar 

  21. Machado H., Braganca H., 1996. In vitro study of ectomycorrhiza formation under drought stress conditions. In: Proceedings of the fourth European symposium on mycorrhizas, Mycorrhizas in integrated systems from genes to plant development, pp. 455–458.

  22. Marx D.H., 1969. The influence of ectotrophic mycorrhizal fungi on the resistance of pine roots to pathogenic infections. Antagonism of mycorrhizal fungi to root pathogenic fungi and soil bacteria, Phytopathology 59: 153–163.

    Google Scholar 

  23. Michel B.E., 1973. Kaufmann M.R., The osmotic potential of polyethylene glycol 6000, Plant physiol. 51: 914–916.

    Article  PubMed  CAS  Google Scholar 

  24. Mortier F., Le Tacon F., Garbaye J., 1989. Effect of dose and formulation of Laccaria laccata inoculum on mycorrhizal infection and growth of Douglas fir in a nursery, Agri. Ecosyst. Environ. 28: 351–354.

    Article  Google Scholar 

  25. Nilsen P., Borja I., Knutsen H., Brean R., 1998. Nitrogen and drought effects on ectomycorrhizae of Norway spruce [Picea abies L. (Karst.)], Plant Soil 198: 179–184.

    Article  CAS  Google Scholar 

  26. Pampolina N.M., Dell B., Malajczuk N., 2002. Dynamics of ectomycorrhizal fungi in an Eucalyptus globulus plantation: effect of phosphorus fertilization, For. Ecol. Manage. 158: 291–304.

    Article  Google Scholar 

  27. Rincón A., Parladé J., Perab J., 2007. Influence of the fertilisation method in controlled ectomycorrhizal inoculation of two Mediterraean pines, Ann. For. Sci. 64: 577–583.

    Article  Google Scholar 

  28. Sanchez F., Honrubia M., Tores P., 2001. Effects of pH, water stress and temperature on in vitro cultures of ectomycorrhizal fungi from Mediterranean forests, Cryptogamie Mycol. 22: 243–258.

    Article  Google Scholar 

  29. Shi J.Y., Ding G.J., 2001. Effects of water stresses on Pinus massoniana seeds from different provenances, J. Mountain Agr. Bio. 19: 332–337 (in Chinese).

    Google Scholar 

  30. Smith S.E., Read D.J., 1997. Mycorrhizal symbiosis. 2nd ed. New York, Academic Press.

    Google Scholar 

  31. Tennakoon M.M.D., Gunatilleke I.A.U.N., Hafeel K.M., Seneviratne G., Gunatilleke C.V.S., Ashton P.M.S., 2005. Ectomycorrhizal colonization and seedling growth of Shorea (Dipterocarpaceae) species in simulated shade environments of a Sri Lankan rain forest, For. Ecol. Manage. 208: 399–405.

    Article  Google Scholar 

  32. Wang S.Q., Xu L.H., Investigation and research of ECM fungi resources of main timber species in northeast, China J. Liaoning For. Sci. Techn. 2 (2002) 17–20 (in Chinese).

    Google Scholar 

  33. Wang X.C., Yan C.X., Chang Z.L., Chen B.J., Wang Q.T., 1999. On intensive management technology of sand-fixation forest for Pinus sylvestris var. mongolica, J. Jilin For. Univ. 15: 60–63 (in Chinese with English abstract).

    Google Scholar 

  34. Wu X.Y., Liu G., Han H., 2002. Soil quality in the different types of Pinus sylvestris var. mongolica man-made sand-fixation forest, J. Beihua Univ (Natural Science) 3: 76–79 (in Chinese with English abstract).

  35. Xu M.L., Zhu J.J., Sun J.D., Kang H.Z., Xu H., Zhang H.W., 2004. A review on the relationships between forest ectomycorrhizal fungi and environmental factors, China J. Ecol. 23: 212–217 (in Chinese with English abstract).

    Google Scholar 

  36. Zhang H.S., Yuan G., Gao G.P., 1992. Pictorial Flora of Macrofungi in the Northeastern shelterbelt, Liaoniang Sci. Tech. Press (in Chinese).

  37. Zhang J.Y, Zhao H.L., Cui J.Y., Zhang T.H., Zhao X.Y., 2005. Community structure, soil water dynamics and community stability of Pinus sylvestris var. mongolica plantation in Horqin sandy land, Sci. Silv. Sini. 41: 1–6 (in Chinese).

    Google Scholar 

  38. Zhao Q., Zeng D.H., Lee D.K., He X.Y., Fan Z.P., Jin Y.H., 2007. Effects of Pinus sylvestris var. mongolica afforestation on soil phosphorus status of the Keerqin Sandy Lands in China, J. Arid Environ. 69: 569–582.

    Article  Google Scholar 

  39. Zhao Z.P., Guo X.Z., 1989. Ecological studies on ectomycorrhizal fungi in pure cultures, For. Res. 2: 136–141 (in Chinese).

    Google Scholar 

  40. Zhou M.Y, Sharik T.L., Jurgensen M.F., Richter D.L., 1997. Ectomycorrhizal colonization of Quercus rubra seedlings in response to vegetation removals in oak and pine stands, For. Ecol. Manage. 93: 91–99.

    Article  Google Scholar 

  41. Zhu J.J., Fan Z.P., Zeng D.H., Jiang F.Q., Matsuzaki T., 2003. Comparison of stand structure and growth between plantation and natural forests of Pinus sylvestris var. mongolica on sandy land, J. For. Res. 14: 103–111.

    Article  Google Scholar 

  42. Zhu J.J., Zeng D.H., Kang H.Z., Wu X.Y, Fan Z.P., 2005a. Decline of Pinus sylvestris var. mongolica Plantations on Sandy Land. Beijing, China Forestry Publishing House (in Chinese with English abstract).

    Google Scholar 

  43. Zhu J.J., Kang H.Z., Tan H., Xu M.L., Wang J., 2005b. Regeneration characteristics of natural Mongolia pine (Pinus sylvestris var. mongolica) forests on sandy land in Honghuaerji, J. For. Res. 16: 305–312.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiao-jun Zhu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, Jj., Li, Fq., Xu, Ml. et al. The role of ectomycorrhizal fungi in alleviating pine decline in semiarid sandy soil of northern China: an experimental approach. Ann. For. Sci. 65, 304 (2008). https://0-doi-org.brum.beds.ac.uk/10.1051/forest:2008007

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://0-doi-org.brum.beds.ac.uk/10.1051/forest:2008007