Register      Login
Animal Production Science Animal Production Science Society
Food, fibre and pharmaceuticals from animals
RESEARCH ARTICLE

Petiole sap nitrate is better than total nitrogen in dried leaf for indicating nitrogen status and yield responsiveness of capsicum in subtropical Australia

JK Olsen and DJ Lyons

Australian Journal of Experimental Agriculture 34(6) 835 - 843
Published: 1994

Abstract

This study was conducted to assess the usefulness of petiole sap nitrate and total nitrogen (N) in dried leaf for determining N status and yield response in capsicum (Capsicum annuum L.) grown with plastic mulch and trickle irrigation in subtropical Australia. Five rates of N (0, 70, 140,210, 280 kg/ha) were applied in factorial combination with 2 rates of potassium (K: 0, 200 kg/ha) in randomised block experiments to capsicum cv. Bell Tower grown at Bundaberg Research Station in spring 1990 and autumn 1991. Critical nutrient ranges for nitrate concentration in petiole sap and for total N concentration in dried youngest mature leaf blades plus petioles (YMB + P) were derived at different stages of crop development (bud development, BD; first anthesis, FA; 80% flowering, F; fruit set, FS). Sap nitrate was about 5 times more sensitive to changes in N application than total N. Petiole sap nitrate accounted for a greater amount of the variation in marketable fruit yield (quadratic square root relationships, 0.45 < R2 < 0.83) than total N concentration in dried YMB + P (linear relationships, 0.29 < R2 < 0.74). Simple linear regressions indicated a stronger relationship between applied N and petiole sap nitrate concentration than total N concentration in dried YMB + P (range in R2 values among 8 sampling events: 0.71-0.91 for petiole sap nitrate, 0.35-0.78 for YMB + P total N). For the fertiliser application strategy, 60% of N was applied pre-fruitset and 40% after. Sap nitrate concentrations associated with 95 and 100% of maximum marketable fruit yield increased from BD (5010-6000 mg/L spring, 4980-5280 mg/L autumn) to FA (6220-7065 mg/L spring, 555M000 mg/L autumn). After FA, the range progressively decreased to 1640-2800 and 520-1220 mg/L at FS, for spring and autumn, respectively. It was concluded that petiole sap nitrate was a better indicator of plant N status and yield response than total N concentration in dried YMB + P for capsicum in subtropical Australia. A critical petiole sap K concentration (corresponding with maximum yield and at which no yield response to K addition was measured) of >4800 mg/L was proposed by correlating sap K with yield responses.

https://doi.org/10.1071/EA9940835

© CSIRO 1994

Committee on Publication Ethics


Rent Article (via Deepdyve) Export Citation Cited By (27) Get Permission

View Dimensions