Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Synthesis, Characterization, and Optical Properties of Near-Infrared Reflecting Composite Inorganic Pigments Composed of TiO2/CuO Core–Shell Particles

Bolong Yao A B , Siyao Geng A , Jie Wang A and Likui Wang A
+ Author Affiliations
- Author Affiliations

A The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemistry and Chemical Engineering, Jiangnan University, Wuxi 214000, China.

B Corresponding author. Email: yyblroland@aliyun.com

Australian Journal of Chemistry 71(5) 373-379 https://doi.org/10.1071/CH17626
Submitted: 4 December 2017  Accepted: 15 March 2018   Published: 4 April 2018

Abstract

Pigments with dark appearance and high solar energy reflectance are of great application value. In the present work, dark grey composite pigments with a TiO2/CuO core–shell structure were prepared through calcination of precursors obtained from the precipitation of Cu(OH)2 on TiO2 particles. The composition, structure, and optical properties of the synthesised powders were characterised by colourimetry, near-infrared diffuse reflectance spectroscopy, X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. The pigments are composed of rutile TiO2 and tenorite CuO, and the powder colour changes from white to dark grey as the Cu content increases. With a molar ratio of CuO to TiO2 of 0.6, the pigment presents optimal colour (a* = 1.66, b* = −2.19, L* = 52.37) and optical performance. The near-infrared reflectance, the solar reflectance in the near-infrared region, and the total solar reflectance reach 87.2, 70.6, and 37.2 %, respectively. Furthermore, it is demonstrated that the composite pigments exhibit a deeper colour and higher reflectivity than conventional dark-blended powders. These cool dark pigments could be applied in the coatings for buildings (roofs and walls) to improve building comfortability and reduce cooling energy consumption.


References

[1]  H. Akbari, R. Levinson, W. Miller, P. Berdahl, Cool Colored Roofs to Save Energy and Improve Air Quality 2018. Available at http://HeatIsland.LBL.gov.

[2]  W. A. Miller, The Effects of Infrared-Blocking Pigments and Deck Venting on Stone-Coated Metal Residential Roofs: Technical Report 2006. 10.2172/981414

[3]  T. Yida, Refrig. Air Cond. (Szechwan) 2010, 24, 89.
         | Crossref | GoogleScholarGoogle Scholar |

[4]  N. M. Nahar, P. Sharma, M. M. Purohit, Build. Environ. 2003, 38, 109.
         | Crossref | GoogleScholarGoogle Scholar |

[5]  R. Sullivan, S. Selkowitz, Effects of Glazing and Ventilation Options on Automobile Air Conditioner Size and Performance, SAE Technical Paper 900219 1990. 10.4271/900219

[6]  L. Song, M. Xinbo, G. Wei, Archit. Technol. 2014, 06, 45.
         | Crossref | GoogleScholarGoogle Scholar |

[7]  R. Levinson, P. Berdahl, H. Akbari, W. Miller, I. Joedicke, J. Reilly, Y. Suzuki, M. Vondra, Sol. Energy Mater. Sol. Cells 2007, 91, 304.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht12jtbfP&md5=42c590031e29905cdb1dc3d461aacfe4CAS |

[8]  K. L. Uemoto, N. M. Sato, V. M. John, Energy Build. 2010, 42, 17.
         | Crossref | GoogleScholarGoogle Scholar |

[9]  X. Xue, J. Qin, J. Song, J. Qu, Y. Shi, W. Zhang, Z. Song, L. Jiang, J. Li, H. Guo, T. Zhang, Sol. Energy Mater. Sol. Cells 2014, 130, 587.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhsVSmtrvM&md5=c3c568e82f6325f31b4bd02b1a032896CAS |

[10]  H. Gonome, M. Baneshi, J. Okajima, J. Quant. Spectrosc. Radiat. Transf. 2014, 132, 90.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXlsVGgtr4%3D&md5=139582584b40edea72133a4a408b2ca8CAS |

[11]  K. L. Uemoto, N. M. Sato, V. M. John, Energy and Buildings 2010, 42, 17.
         | Crossref | GoogleScholarGoogle Scholar |

[12]  R. Levinson, H. Akbari, J. C. Reilly, Build. Environ. 2007, 42, 2591.
         | Crossref | GoogleScholarGoogle Scholar |

[13]  J. Sproul, M. P. Wan, B. H. Mandel, A. H. Rosenfeld, Energy and Buildings 2014, 71, 20.
         | Crossref | GoogleScholarGoogle Scholar |

[14]  V. S. Vishnu, M. L. Reddy, Sol. Energy Mater. Sol. Cells 2011, 95, 2685.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXnslehs78%3D&md5=65f9fef692aafadf74966421c911d8b3CAS |

[15]  S. Jose, M. L. Reddy, Dyes Pigments 2013, 98, 540.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXptVCktLo%3D&md5=74b89c5735c2a6a5db12d270d1d4846fCAS |

[16]  High Performance Pigments (Eds E. B. Faulkner, R. J. Schwartz) 2009 (Wiley: Hoboken, NJ).

[17]  M. Ryan, Focus on Powder Coatings 2017, 2017, 5.
         | Crossref | GoogleScholarGoogle Scholar |

[18]  A. Synnefa, M. Santamouris, K. Apostolakis, Sol. Energy 2007, 81, 488.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjsVWis7k%3D&md5=f10ec29a7221762ba6282ebbc7d4050eCAS |

[19]  T. Masui, T. Honda, N. Imanaka, Dyes Pigments 2013, 99, 636.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhslWqtb7E&md5=f1fc67895f9ffd1fea619108f86c922bCAS |

[20]  S. Ke, Y. Wang, Z. Pan, Dyes Pigments 2014, 108, 98.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXovFKhtb4%3D&md5=e2f36863eac2cfc324542f55bf71e499CAS |

[21]  A. K. V. Raj, P. P. Rao, S. Sameera, Dyes Pigments 2015, 122, 116.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhtVOlsLbF&md5=4a2e0f3263590e43fbdede3b77deea72CAS |

[22]  M. Baneshi, S. Maruyama, A. Komiya, J. Quant. Spectrosc. Radiat. Transf. 2011, 112, 1197.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjtVGhtLg%3D&md5=e884baaacf97c93fc408893164664499CAS |

[23]  H. Gonome, M. Baneshi, J. Okajim, J. Quant. Spectrosc. Radiat. Transf. 2014, 132, 90.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXlsVGgtr4%3D&md5=139582584b40edea72133a4a408b2ca8CAS |

[24]  M. Shujie, H. Liha, Chin. J. Appl. Chem. 2000, 17, 322.
         | Crossref | GoogleScholarGoogle Scholar |

[25]  M. Shujie, Synthesis of Copper Titanates Molecular. CN.1168814 [P]. 1997-12-31.

[26]  U. Balachandran, N. G. J. Eror, J. Solid State Chem. 1982, 42, 276.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL38XktlSmtrg%3D&md5=54b39e0df7c2ce57b35b4537aaacf27aCAS |

[27]  Y. Hara, M. Nicol, Phys. Status. Solid B. 1979, 94, 317.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1MXkvF2ns7c%3D&md5=8b03fb3fa9925efa74adace6bc648627CAS |

[28]  D. Chen, G. Z. Shen, K. B. Tang, Y. T. Qian, J. Cryst. Growth 2003, 254, 225.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjsF2qu7Y%3D&md5=d0066c55ab61c33eba4f38805c766e71CAS |

[29]  A. Libbra, L. Tarozzi, A. Muscio, Opt. Laser Technol. 2011, 43, 394.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1KgsLfO&md5=1b9d620ce3b916a067505005e9aafba5CAS |

[30]  R. Levinson, H. Akbari, P. Berdahl, Sol. Energy Mater. Sol. Cells 2010, 94, 946.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXkvFehsr0%3D&md5=24c719f768eb641693e4620ee0e924f0CAS |

[31]  R. Levinson, H. Akbari, P. Berdahl, Sol. Energy 2010, 84, 1717.
         | Crossref | GoogleScholarGoogle Scholar |