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Closed Forms: What They Are
Mathematics abounds in terms that are in frequent
use yet are rarely made precise. Two such are rigor-
ous proof and closed form (absent the technical use
within differential algebra). If a rigorous proof is
“that which ‘convinces’ the appropriate audience,”
then a closed form is “that which looks ‘funda-
mental’ to the requisite consumer.” In both cases,
this is a community-varying and epoch-dependent
notion. What was a compelling proof in 1810 may
well not be now; what is a fine closed form in 2010
may have been anathema a century ago. In this
article we are intentionally informal as befits a
topic that intrinsically has no one “right” answer.

Let us begin by sampling the Web for various
approaches to informal definitions of “closed
form”.

Definitions

First Approach to a Definition of Closed Form. The
first comes from MathWorld [56] and so may well
be the first and last definition a student or other
seeker-after-easy-truth finds.

An equation is said to be a closed-form
solution if it solves a given problem in terms
of functions and mathematical operations
from a given generally accepted set. For
example, an infinite sum would generally
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not be considered closed-form. However,
the choice of what to call closed-form
and what not is rather arbitrary since a
new “closed-form” function could simply
be defined in terms of the infinite sum.

—Eric Weisstein

There is not much to disagree with in this, but
it is far from rigorous.

Second Approach. The next attempt follows a
September 16, 1997, question to the long-operating
“Dr. Math” site1 and is a good model of what
interested students are likely to be told.

Subject: Closed form solutions
Dear Dr. Math: What is the exact mathe-

matical definition of a closed form solution?
Is a solution in “closed form” simply if an
expression relating all of the variables can
be derived for a problem solution, as op-
posed to some higher-level problems where
there is either no solution, or the problem
can only be solved incrementally or numeri-
cally?
Sincerely, ….

The answer followed on September 22:

This is a very good question! This matter
has been debated by mathematicians for
some time, but without a good resolution.

Some formulas are agreed by all to be
“in closed form”. Those are the ones which
contain only a finite number of symbols,
and include only the operators +,−,∗, /,

1Available at http://mathforum.org/dr/math/.
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and a small list of commonly occurring
functions such as nth roots, exponentials,
logarithms, trigonometric functions, inverse
trigonometric functions, greatest integer
functions, factorials, and the like.

More controversial would be formulas
that include infinite summations or prod-
ucts, or more exotic functions, such as
the Riemann zeta function, functions ex-
pressed as integrals of other functions
that cannot be performed symbolically,
functions that are solutions of differential
equations (such as Bessel functions or hy-
pergeometric functions), or some functions
defined recursively. Some functions whose
values are impossible to compute at some
specific points would probably be agreed
not to be in closed form (example: f (x) = 0
if x is an algebraic number, but f (x) = 1 if
x is transcendental. For most numbers, we
do not know if they are transcendental or
not). I hope this is what you wanted.

No more formal but representative of many
dictionary definitions is:

Third Approach. A coauthor of the current article
is at least in part responsible for the following brief
definition from a recent mathematics dictionary
[17]:

closed form n. an expression for a given
function or quantity, especially an integral,
in terms of known and well understood
quantities, such as the evaluation of∫∞

−∞
exp(−x2)dx

as
√
π.

—Collins Dictionary

And of course one cares more for a closed form
when the object under study is important, such as
when it engages the normal distribution as above.

With that selection recorded, let us turn to some
more formal proposals.

Fourth Approach. Various notions of elementary
numbers have been proposed.

Definition [31]. A subfield F of C is closed
under exp and log if (1) exp(x) ∈ F for all
x ∈ F and (2) log(x) ∈ F for all nonzero
x ∈ F , where log is the branch of the
natural logarithm function such that −π <
Im(log x) ≤ π for all x. The field E of EL
numbers is the intersection of all subfields
of C that are closed under exp and log.

—Tim Chow

Tim Chow explains nicely why he eschews
capturing all algebraic numbers in his definition,
why he wishes only elementary quantities to have
closed forms, whence he prefers E to Ritt’s 1948
definition of elementary numbers as the smallest
algebraically closed subfield L of C that is closed
under exp and log. His reasons include that:

Intuitively, “closed-form” implies “explicit”,
and most algebraic functions have no simple
explicit expression.

Assuming Shanuel’s conjecture that given n
complex numbers z1, . . . , zn which are linearly in-
dependent over the rational numbers, the extension
field

Q (z1, . . . , zn, ez1 , . . . , ezn)

has transcendence degree of at least n over the
rationals, then the algebraic members of E are
exactly those solvable in radicals [31]. We may
thence think of Chow’s class as the smallest
plausible class of closed forms. Only a mad version
of Markov would want to further circumscribe the
class.

Special Functions

In an increasingly computational world, an ex-
plicit/implicit dichotomy is occasionally useful,
but not very frequently. Often we will prefer com-
putationally the numerical implicit value of an
algebraic number to its explicit tower of radicals,
and it seems increasingly perverse to distinguish
the root of 2x5−10x+5 from that of 2x4−10x+5
or to prefer arctan(π/7) to arctan(1).We illustrate
these issues further in Examples 7, 9, and 14.

We would prefer to view all values of classical
special functions of mathematical physics [54] at
algebraic arguments as being closed forms. Again
there is no generally accepted class of special
functions, but most practitioners would agree that
the solutions to the classical second-order algebraic
differential equations (linear or, say, Painlevé) are
included. But so are various hypertranscendental
functions, such as Γ , B, and ζ, which do not arise
in that way.2

Hence, we do not wish to accept any definition
of special function which relies on the underlying
functions satisfying natural differential equations.
The class must be extensible; new special functions
are always being discovered.

A recent American Mathematical Monthly re-
view3 of [47] says:

2Of course, a value of a hypertranscendental function
at algebraic argument may be very well behaved; see
Example 4.
3Available at http://www.maa.org/maa%20reviews/
4221.html.
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There’s no rigorous definition of special
functions, but the following definition is in
line with the general consensus: functions
that are commonly used in applications have
many nice properties and are not typically
available on a calculator. Obviously this is
a sloppy definition, and yet it works fairly
well in practice. Most people would agree,
for example, that the Gamma function is
included in the list of special functions and
that trigonometric functions are not.

Once again, there is much to agree with and
much to quibble about in this reprise. That said,
most serious books on the topic are little more spe-
cific. For us, special functions are nonelementary
functions about which a significant literature has
developed because of their importance in either
mathematical theory or in practice. We certainly
prefer that this literature include the existence of
excellent algorithms for their computation. This is
all consonant with—if somewhat more ecumenical
than—Temme’s description in the preface of his
lovely book [54, Preface, p. xi]:

[W]e call a function “special” when the func-
tion, just like the logarithm, the exponential
and trigonometric functions (the elemen-
tary transcendental functions), belongs to
the toolbox of the applied mathematician,
the physicist or engineer.

Even more economically, Andrews, Askey, and
Roy start the preface to their important book
Special Functions [1] by writing:

Paul Turan once remarked that special
functions would be more appropriately
labeled “useful functions”.

With little more ado, they then start to work on
the Gamma and Beta functions; indeed, the term
“special function” is not in their index. Near the
end of their preface, they also write:

[W]e suggest that the day of formulas may
be experiencing a new dawn.

Example 1 (Lambert’s W). The Lambert W func-
tion, W(x), is defined by appropriate solution of
y ·ey = x [21, pp. 277–279]. This function has been
implemented in computer algebra systems (CAS)
and has many uses despite being unknown to most
scientists and only relatively recently named [41].
It is now embedded as a primitive in Maple and
Mathematica with the same status as any other
well-studied special or elementary function. (See,
for example, the tome [26].) The CAS know its
power series and much more. For instance, in Maple
entering:

> fsolve(exp(x)*x=1);identify(%);
returns

0.5671432904, LambertW(1)

(a) modulus of WWW

(b)WWW on real line

Figure 1. The Lambert WWW function.

We consider this to be a splendid closed form
even though, again assuming Shanuel’s conjecture,
W(1) 6∈ E [31]. Additionally, it has only recently
rigorously been proven thatW is not an elementary
function in Liouville’s precise sense [26]. We also
note that successful simplification in a modern
CAS [29] requires a great deal of knowledge of
special functions. �

Further Approaches

Fifth Approach. PlanetMath’s offering, as of Feb-
ruary 15, 2010,4 is certainly in the elementary
number corner.

expressible in closed form (Definition) An
expression is expressible in a closed form
if it can be converted (simplified) into
an expression containing only elementary
functions, combined by a finite amount of
rational operations and compositions.

—PlanetMath

4Available at http://planetmath.org/encyclopedia/
ClosedForm4.html.
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This reflects both much of what is best and
what is worst about “the mathematical wisdom
of crowds”. For the reasons adduced above, we
wish to distinguish—but admit both—those closed
forms that give analytic insight from those which
are sufficient and prerequisite for effective com-
putation. Our own current preferred class [7] is
described next.

Sixth Approach. We wish to establish a set X of
generalized hypergeometric evaluations; see [7] for
an initial, rudimentary definition which we shall
refine presently. First, we want any convergent
sum

(1) x =
∑
n≥0

cnzn

to be an element of our set X, where z is algebraic,
c0 is rational, and for n > 0,

cn =
A(n)
B(n)

cn−1

for integer polynomialsA,Bwith degA ≤ degB. Un-
der these conditions the expansion for x converges
absolutely on the open disk |z| < 1. However, we
also allow x to be any finite analytic-continuation
value of such a series. Moreover, when z lies on
a branch cut, we presume both branch limits to
be elements of X. (See ensuing examples for some
clarification.) It is important to note that our set
X is closed under rational multiplication due to
freedom of choice for c0.

Example 2 (First members of X). The generalized
hypergeometric function evaluation

p+1Fp

(
a1, . . . ap+1

b1, . . . , bp

∣∣∣∣z
)

for rational ai , bj with all bj positive has branch
cut z ∈ (0,∞), and the evaluation is an element of
X for complex z not on the cut (and the evaluation
on each side of said cut is also in X).

The trilogarithm Li3(z) :=
∑
n≥1 zn/n3 offers a

canonical instance. Formally,

1
z

Li3(z) = 4F3

(
1,1,1,1
2,2,2

∣∣∣∣z) ,
and for z = 1/2 the hypergeometric series con-
verges absolutely, with

Li3

(
1
2

)
= 7

8
ζ(3)+ 1

6
log3 2− π

2

12
log 2.

Continuation values at z = 2 on the branch cut can
be inferred as

lim
ε→0+

Li3 (2± iε) =
7

16
ζ(3)+ π

2

8
log 2 ± i π

4
log 2,

so both complex numbers on the right here are el-

ements of X. The quadralogarithmic value Li4
(

1
2

)
is thought not to be similarly decomposable but
likewise belongs to X. �

Now we are prepared to posit

Definition [7]. The ring of hyperclosureH is
the smallest subring of C containing the set
X. Elements of H are deemed hyperclosed.

In other words, the ring H is generated by all
general hypergeometric evaluations under the ·,+
operators, all symbolized by

H = 〈X〉·,+ .
H will contain a great many interesting closed
forms from modern research. Note thatH contains
all closed forms in the sense of Wilf and Zeilberger
[48, Ch. 8], wherein only finite linear combinations
of hypergeometric evaluations are allowed.

So what numbers are in the ring H? First off,
almost no complex numbers belong to this ring!
This is easily seen by noting that the set of general
hypergeometric evaluations is countable, so the
generated ring must also be countable. Still, a
great many fundamental numbers are provably
hyperclosed. Examples follow, in which we let ω
denote an arbitrary algebraic number and n any
positive integer:

ω, logω, eω, π ;

the dilogarithmic combination

Li2

(
1√
5

)
+ (log 2)(log 3);

the elliptic integral K(ω);
the zeta function values ζ(n);

special functions such as

the Bessel evaluations Jn(ω).

Incidentally, it occurs in some modern experi-
mental developments that the real or imaginary part
of a hypergeometric evaluation is under scrutiny.
Generally, <,= operations preserve hyperclosure
simply because the series (or continuations) at z
and z∗ can be linearly combined in the ring H. Re-
ferring to Example 2, we see that for algebraic z, the
number< (Li3(z)) is hyperclosed, and even on the

cut, < (Li3(2)) = 7
16ζ(3)+

π2

8 log 2 is hyperclosed.

In general, <
(
p+1Fp

(
···
···

∣∣∣∣z)) is hyperclosed.

We are not claiming that hyperclosure is any
kind of final definition for “closed forms”, but we
do believe that any defining paradigm for closed
forms must include this ring of hyperclosure H.
One way to reach further is to define a ring of
superclosure as the closure

S := 〈HH〉·,+ .
This ring contains numbers such as

eπ +πe, 1
ζ(3)ζ(5)

,

and of course a vast collection of numbers that may
not belong to H itself. If we say that an element of
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S is superclosed, we still preserve the countability
of all superclosed numbers. Again, any good
definition of “closed form” should incorporate
whatever is in the ring S.

Seventh Approach. In a more algebraic topological
setting, it might make sense to define closed
forms to be those arising as periods, that is,
as integrals of rational functions (with integer
parameters) in n variables over domains defined
by algebraic equations. These ideas originate in
the theory of elliptic and abelian integrals and
are deeply studied [42]. Periods form an algebra
and certainly capture many constants. They are
especially well suited to the study of L-series,
multizeta values, polylogarithms, and the like but
again will not capture all that we wish. For example,
e is conjectured not to be a period, as is Euler’s
constant γ (see the section “Profound Curiosities”).
Moreover, while many periods have nice series, it
is not clear that all do.

As this takes us well outside our domain of
expertise, we content ourselves with two examples
originating in the study of Mahler measures. We
refer to a fundamental paper by Deninger [39] and
a very recent paper of Rogers [50] for details.

Example 3 (Periods and Mahler measures [39]).
The logarithmic Mahler measure of a polynomial
P in n-variables can be defined as

µ(P) :=
∫ 1

0

∫ 1

0
· · ·

∫ 1

0
log

∣∣∣P (e2πiθ1 , . . . , e2πiθn
)∣∣∣

× dθ1 · · ·dθn.
Then µ(P) turns out to be an example of a period,
and its exponential, M(P) := exp(µ(P)), is a mean
of the values of P on the unit n-torus. When
n = 1 and P has integer coefficients, M(P) is
always an algebraic integer. An excellent online
synopsis can be found in Dave Boyd’s article,
http://eom.springer.de/m/m120070.htm. In-
deed, Boyd has been one of the driving forces in
the field. A brief introduction to the univariate
case is also given in [22, pp. 358–359].

There is a remarkable series of recent results—
many more discovered experimentally than
proven—expressing various multidimensional
µ(P) as arithmetic quantities. Boyd observes that
there appears to be a tight connection to K-theory.
An early result due to Smyth (see [51], also [53]) is
that µ(1+x+y) = L′3(−1). Here L3 is the Dirichlet
L-series modulo three. A partner result of Smyth’s
is that µ(1 + x + y + z) = 7ζ(3)/π2, a number
that is certainly hyperclosed since both ζ(3) and
1/π are. A conjecture of Deninger [39], confirmed
to over fifty places, is that

(2) µ(1+ x+ y + 1/x+ 1/y) ?= 15
π2
LE(2)

is an L-series value over an elliptic curve E with
conductor 15. Rogers [50] recasts (2) as

(3) F(3,5) ?= 15
π2

∞∑
n=0

(
2n
n

)2
(1/16)2n+1

2n+ 1
,

where
F(b, c) := (1+ b)(1+ c)

×
∑

n,m,j,k

(−1)n+m+j+k(
(6n+ 1)2 + b(6m+ 1)2 + c(6j + 1)2 + bc(6k+ 1)2

)2

is a four-dimensional lattice sum.
While (3) remains a conjecture,5 Rogers is able to

evaluate many values of F(b, c) in terms of Meijer-
G or hypergeometric functions. We shall consider
the most famous crystal sum, the Madelung con-
stant, in Example 15. �

It is striking how beautiful combinatorial games
can be when played under the rubric of hyper- or
superclosure.

Example 4 (Superclosure of Γ at rational argu-
ments). Let us begin with the Beta function

B(r, s) := Γ(r)Γ(s)Γ(r + s) ,
with Γ(s) defined, if one wishes, as Γ(s) :=∫∞
0 ts−1e−t dt . It turns out that for any rationals r , s

the Beta function is hyperclosed. This is immediate
from the hypergeometric identities

1
B(r, s)

= rs
r + s 2F1

(−r ,−s
1

∣∣∣∣1
)
,

B(r , s) = π sinπ(r + s)
sinπr sinπs

(1− r)M(1− s)M
M !(1− r − s)M

× 2F1

(
r , s
M + 1

∣∣∣∣1
)
,

where M is any integer chosen such that the hy-
pergeometric series converges, sayM = d1+ r + se.
(Each of these Beta relations is a variant of the cele-
brated Gauss evaluation of 2F1 at 1 [1], [54] and is
also the reason B is a period.)

We did not seize upon the Beta function arbitrar-
ily, for, remarkably, the hyperclosure of B(r, s)±1

leads to compelling results on the Gamma function
itself. Indeed, consider for example this product
of four Beta-function evaluations:Γ(1/5)Γ(1/5)Γ(2/5) · Γ(2/5)Γ(1/5)Γ(3/5)

· Γ(3/5)Γ(1/5)Γ(4/5) · Γ(4/5)Γ(1/5)Γ(5/5) .

We know this product is hyperclosed. But upon
inspection we see that the product is just Γ 5(1/5).

5Equation (2) is now proven, see M. Rogers and W. Zudilin,
“On the Mahler measure of 1+X+1/X+Y +1/Y ”, preprint
(2011), http://arxiv.org/abs/1102.1153.
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Along such lines one can prove that for any posi-
tive rational a/b (in lowest terms), we have hyper-
closure of powers of the Gamma function in the
form Γ±b(a/b) ∈ H.
Perforce, we therefore have a superclosure result
for any Γ(rational) and its reciprocal:Γ±1(a/b) ∈ S.
Again, like calculations show that Γb(a/b) is a pe-
riod [42]. One fundamental consequence is thusΓ−2

(
1
2

)
= 1

π is hyperclosed; thus every integer
power of π is hyperclosed.

Incidentally, deeper combinatorial analysis

shows that in spite of our Γ 5
(

1
5

)
Beta-chain above,

it really takes only logarithmically many (i.e.,
O(logb)) hypergeometric evaluations to write
Gamma-powers. For example,

Γ−7
(

1
7

)
= 1

2376 2F1

(
− 1

7 ,−
1
7

1

∣∣∣∣1

)4

× 2F1

(
− 2

7 ,−
2
7

1

∣∣∣∣1

)2

2F1

(
− 4

7 ,−
4
7

1

∣∣∣∣1

)
.

We note also that for Γ(n/24)with n integer, elliptic
integral algorithms are known that converge as fast
as those for π [27], [22]. �

The above remarks on superclosure of Γ(a/b)
lead to the property of superclosure for special
functions such as Jν(ω) for algebraic ω and
rational ν and for many of the mighty Meijer-
G functions, as the latter can frequently be
written by Slater’s theorem [15] as superpositions
of hypergeometric evaluations with composite-
gamma products as coefficients. (See Example 8
for instances of Meijer-G in current research.)

There is an interesting alternative way to en-
vision hyperclosure or at least something very
close to our above definition. This is an idea
of J. Carette [28] to the effect that solutions at
algebraic end-points and algebraic initial points
for holonomic ODEs—i.e., differential-equation sys-
tems with integer-polynomial coefficients—could
be considered closed. One might say diffeoclosed.
An example of a diffeoclosed number is J1(1), i.e.,
from the Bessel differential equation for J1(z) with
z ∈ [0,1]; it suffices without loss of generality
to consider topologically clean trajectories of the
variable over [0,1]. There is a formal ring of
diffeoclosure, which ring is very similar to our H;
however, there is the caution that trajectory solu-
tions can sometimes have nontrivial topology, so
precise ring definitions would need to be effected
carefully.

It is natural to ask, “what is the complexity
of hypergeometric evaluations?” Certainly for the
converging forms with variable z on the open unit

disk, convergence is geometric, requiring O(D1+ε)
operations to achieve D good digits. However, in
very many cases this can be genuinely enhanced
to O(D1/2+ε) [22].

Closed Forms: Why We Care
In many optimization problems, simple,
approximate solutions are more useful than
complex exact solutions.

—Steve Wright

As Steve Wright observed in a recent lecture on
sparse optimization, it may well be that a compli-
cated analytic solution is practically intractable,
but a simplifying assumption leads to a very practi-
cal closed form approximation (e.g., in compressed
sensing). In addition to appealing to Occam’s razor,
Wright instances that:

(a) the data quality may not justify exactness,
(b) the simple solution may be more robust,
(c) it may be easier to explain/actuate/

implement/store,
(d) and it may conform better to prior knowl-

edge.

As mathematical discovery more and more
involves extensive computation, the premium
on having a closed form increases. The insight
provided by discovering a closed form ideally
comes at the top of the list, but efficiency of
computation will run a good second.

Example 5 (The amplitude of a pendulum).
Wikipedia,6 after giving the classical small angle
(simple harmonic) approximation

p ≈ 2π

√
L
g

for the period p of a pendulum of length L and
amplitude α, develops the exact solution in a form
equivalent to

p = 4

√
L
g

K
(

sin
α
2

)
and then says:

This integral cannot be evaluated in terms
of elementary functions. It can be rewrit-
ten in the form of the elliptic function of
the first kind (also see Jacobi’s elliptic func-
tions), which gives little advantage since
that form is also insoluble.

True, an elliptic-integral solution is not elementary,
yet the notion of insolubility is misleading for two
reasons: First, it is known that for some special
anglesα the pendulum period can be given a closed
form. As discussed in [33], one exact solution is, for

6Available at http://en.wikipedia.org/wiki/
Pendulum_(mathematics).
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α = π/2 (so pendulum is released from horizontal-
rod position),

p =
(

2π

√
L
g

) √
πΓ 2(3/4)

.

It is readily measurable in even a rudimentary lab-
oratory that the excess factor here,

√
πΓ−2(3/4) ≈

1.18034, looks just right; i.e., a horizontal-release
pendulum takes 18 percent longer to fall. More-
over, there is an exact dynamical solution for the
time-dependent angle α(t), namely, for a pendu-
lum with α(±∞) = ±π and α(0) = 0; i.e., the bob
crosses angle zero (hanging straight down) at time
zero, but in the limits of time → ±∞ the bob ends
up straight vertical. We have period p = ∞, yet the
exact angle α(t) for given t can be written in terms
of elementary functions!

The second misleading aspect is this: K is, for
any α, remarkably tractable in a computational
sense. Indeed K admits a quadratic transformation

(4) K (k) = (1+ k1)K (k1) , k1 := 1−
√

1− k2

1+
√

1− k2
,

as was known already to Landen, Legendre, and
Gauss.

In fact all elementary functions to very high
precision are well computed via K [22]. So the com-
ment was roughly accurate in the world of slide
rules or pocket calculators; it is misleading today if
one has access to any computer package. Neverthe-
less, both deserve to be called closed forms: one
exact and the other an elegant approximate closed
form (excellent in its domain of applicability, much
as with Newtonian mechanics) that is equivalent to

K
(

sin
α
2

)
≈ π

2
for small initial amplitude α. To compute
K(π/6) = 1.699075885 . . . to five places re-
quires using (4) only twice and then estimating the
resultant integral by π/2. A third step gives the
ten-digit precision shown. �

It is now the case that much mathematical
computation is hybrid : mixing numeric and sym-
bolic computation. Indeed, which is which may not
be clear to the user if, say, numeric techniques
have been used to return a symbolic answer or if
a symbolic closed form has been used to make
possible a numerical integration. Moving from
classical to modern physics, both understand-
ing and effectiveness frequently demand hybrid
computation.

Example 6 (Scattering amplitudes [2]). An interna-
tional team of physicists, in preparation for the
Large Hadron Collider (LHC), is computing scat-
tering amplitudes involving quarks, gluons, and
gauge vector bosons in order to predict what re-
sults could be expected on the LHC. By default,

these computations are performed using conven-
tional double precision (64-bit IEEE) arithmetic.
Then if a particular phase space point is deemed
numerically unstable, it is recomputed with double-
double precision. These researchers expect that
further optimization of the procedure for identify-
ing unstable points may be required to arrive at an
optimal compromise between numerical accuracy
and speed of the code. Thus they plan to incor-
porate arbitrary precision arithmetic into these
calculations. Their objective is to design a pro-
cedure where instead of using fixed double or
quadruple precision for unstable points, the num-
ber of digits in the higher precision calculation is
dynamically set according to the instability of the
point. Any subroutine which uses a closed form
symbolic solution (exact or approximate) is likely
to prove much more robust and efficient. �

Detailed Examples
We start with three examples originating in [16].

In the January 2002 issue of SIAM News, Nick
Trefethen presented ten diverse problems used
in teaching modern graduate numerical analysis
students at Oxford University, the answer to
each being a certain real number. Readers were
challenged to compute ten digits of each answer,
with a $100 prize to the best entrant. Trefethen
wrote,

If anyone gets 50 digits in total, I will be
impressed.

To his surprise, a total of ninety-four teams,
representing twenty-five different nations, sub-
mitted results. Twenty of these teams received
a full one hundred points (ten correct digits for
each problem). The problems and solutions are
dissected most entertainingly in [16]. One of the
current authors wrote the following in a review
[19] of [16]:

Success in solving these problems required
a broad knowledge of mathematics and nu-
merical analysis, together with significant
computational effort, to obtain solutions
and ensure correctness of the results. As
described in [16] the strengths and lim-
itations of Maple, Mathematica, Matlab
(The 3Ms), and other software tools such
as PARI or GAP, were strikingly revealed in
these ventures. Almost all of the solvers
relied in large part on one or more of these
three packages, and while most solvers
attempted to confirm their results, there
was no explicit requirement for proofs to
be provided.

Example 7 (Trefethen problem #2 [16], [19]).

56 Notices of the AMS Volume 60, Number 1



A photon moving at speed 1 in the x-y plane
starts at t = 0 at (x, y) = (1/2,1/10) head-
ing due east. Around every integer lattice
point (i, j) in the plane, a circular mirror of
radius 1/3 has been erected. How far from
the origin is the photon at t = 10?

Using interval arithmetic with starting intervals
of size smaller than 10−5000, one can actually find
the position of the particle at time 2000, not just
at time ten. This makes a fine exercise in very high-
precision interval computation, but in the absence
of any closed form, one is driven to such numerical
gymnastics to deal with error propagation. �

Example 8 (Trefethen’s problem #9 [16], [19]).

The integral I(a) =
∫ 2
0 [2 + sin(10α)]xα

× sin(α/(2− x))dx depends on the param-
eter α. What is the value α ∈ [0,5] at which
I(α) achieves its maximum?

The maximum parameter is expressible in terms
of a Meijer-G function, which is a special func-
tion with a solid history. While knowledge of this
function was not common among the contestants,
Mathematica and Maple both will figure this out
[15], and then the help files or a Web search will
quickly inform the scientist.

This is another measure of the changing envi-
ronment. It is usually a good idea—and not at all
immoral—to data-mine. These Meijer-G functions,
first introduced in 1936, also occur in quantum
field theory and many other places [8]. For exam-
ple, the moments of an n-step random walk in the
plane are given for s > 0 by

(5) Wn(s) :=
∫
[0,1]n

∣∣∣∣∣∣
n∑
k=1

e2πxki

∣∣∣∣∣∣
s

dx.

It transpires [24], [36] that for all complex s
(6)

W3(s) =
Γ(1+ s/2)Γ(1/2)Γ(−s/2) G2,1

3,3

(
1,1,1

1
2 ,−

s
2 ,−

s
2

∣∣∣∣1
4

)
.

Moreover, for s not an odd integer, we have

W3(s) =
1

22s+1
tan

(
πs
2

)(
s
s−1

2

)2

3F2

 1
2 ,

1
2 ,

1
2

s+3
2 ,

s+3
2

∣∣∣∣1
4


+
(
s
s
2

)
3F2

(
− s2 ,−

s
2 ,−

s
2

1,− s−1
2

∣∣∣∣1
4

)
.

We have not given the somewhat technical defini-
tion of MeijerG, but Maple, Mathematica, Google
searches, Wikipedia, the DLMF, or many other tools
will.

There are two corresponding formulae for W4.
We thus know from our “Sixth Approach” section,
in regard to superclosure of Γ -evaluations, that
both W3(q),W4(q) are superclosed for rational ar-
gument q for q not an odd integer. We illustrate
by showing graphs of W3,W4 on the real line in

6 4 2 2

3

2

1

1

2

3

4

(a)W3W3W3

6 4 2 2

3

2

1

1

2

3

4

(b)W4W4W4

Figure 2. Moments of nnn-step walks in the plane.
W3W3W3, W4W4W4 analytically continued to the real line.

Figure 2 and in the complex plane in Figure 3.
The latter highlights the utility of the Meijer-G
representations. Note the poles and removable
singularities.

The Meijer-G functions are now described in the
newly completed Digital Library of Mathematical
Functions7 and as such are now full, indeed central,
members of the family of special functions. �

Example 9 (Trefethen’s problem #10 [16], [19]).

A particle at the center of a 10×1 rectangle
undergoes Brownian motion (i.e., 2-D ran-
dom walk with infinitesimal step lengths)
till it hits the boundary. What is the proba-
bility that it hits at one of the ends rather
than at one of the sides?

Hitting the Ends. Bornemann [16] starts his remark-
able solution by exploring Monte-Carlo methods,
which are shown to be impracticable. He then
reformulates the problem deterministically as
the value at the center of a 10× 1 rectangle of an
appropriate harmonic measure [57] of the ends,
arising from a five-point discretization of Laplace’s
equation with Dirichlet boundary conditions. This
is then solved by a well-chosen sparse Cholesky

7A massive revision of Abramowitz and Stegun, with
the now redundant tables removed, is available at
http://dlmf.nist.gov. The hard copy version is
also now out [45]. It is not entirely a substitute for the
original version, as coverage has changed.
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(a)W3W3W3

(b)W4W4W4

Figure 3. W3W3W3 via (6) and W4W4W4 in the complex plane.

solver. At this point a reliable numerical value of
3.837587979 · 10−7 is obtained, and the posed
problem is solved numerically to the requisite ten
places.

This is the warm-up. We may proceed to develop
two analytic solutions, the first using separation
of variables on the underlying PDE on a general
2a× 2b rectangle. We learn that

(7) p(a, b) = 4
π

∞∑
n=0

(−1)n

2n+ 1
sech

(
π(2n+ 1)

2
ρ
)
,

where ρ := a/b. A second method using conformal
mappings yields

(8) arccotρ = p(a, b) π
2
+ arg K

(
eip(a,b)π

)
,

where K is again the complete elliptic integral of
the first kind. It will not be apparent to a reader
unfamiliar with inversion of elliptic integrals that
(7) and (8) encode the same solution—though they
must, as the solution is unique in (0,1)—and each
can now be used to solve for ρ = 10 to arbitrary
precision. Bornemann ultimately shows that the

answer is

(9) p = 2
π

arcsin (k100) ,

where

k100 :=
((

3− 2
√

2
)(

2+
√

5
)(
−3+

√
10
)

×
(
−
√

2+ 4
√

5
)2
)2

.

No one (except harmonic analysts perhaps) antici-
pated a closed form, let alone one like this.

Where Does This Come From? In fact, [22, (3.2.29)]
shows that

(10)
∞∑
n=0

(−1)n

2n+ 1
sech

(
π(2n+ 1)

2
ρ
)
= 1

2
arcsink

exactly when kρ2 is parameterized by theta func-
tions in terms of the so-called nome, q = exp(−πρ),
as Jacobi discovered. We have

(11) kρ2= θ
2
2(q)
θ2

3(q)
=
∑∞
n=−∞ q(n+1/2)2∑∞

n=−∞ qn
2 , q :=e−πρ.

Comparing (10) and (7) we see that the solution is

k100 = 6.02806910155971082882540712292 . . . · 10−7,

as asserted in (9).
The explicit form now follows from classical

nineteenth-century theory, as discussed, say, in
[16], [22]. In fact, k210 is the singular value sent
by Ramanujan to Hardy in his famous letter of
introduction [21], [22]. If Trefethen had asked for
a
√

210× 1 box or, even better, a
√

15×
√

14 one,
this would have shown up in the answer, since in
general

(12) p(a, b) = 2
π

arcsin
(
ka2/b2

)
.

Alternatively, armed only with the knowledge
that the singular values of rational parameters
are always algebraic, we may finish entirely
computationally as described in [19]. �

We finish this section with two attractive ap-
plied examples from optics and astrophysics
respectively.

Example 10 (Mirages [46]). In [46] the authors,
using geometric methods, develop an exact but im-
plicit formula for the path followed by a light ray
propagating over the earth with radial variations in
the refractive index. By suitably simplifying, they
are able to provide an explicit integral closed form.
They then expand it asymptotically. This is done
with the knowledge that the approximation is good
to six or seven places, more than enough to use it
on optically realistic scales. Moreover, in the case
of quadratic or linear refractive indices, these steps
may be done analytically.

In other words, as advanced by Wright, a
tractable and elegant approximate closed form is
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(a) A superior mirage

(b) An inferior mirage (Photo © Ctein.)

Figure 4. Two impressive mirages.

obtained to replace a problematic exact solution.
From these forms interesting qualitative conse-
quences follow. With a quadratic index, images
are uniformly magnified in the vertical direction;
only with higher-order indices can nonuniform
vertical distortion occur. This sort of knowledge
allows one, for example, to correct distortions of
photographic images as in Figure 4 with confidence
and efficiency. �

Example 11 (Structure of stars). The celebrated
Lane-Emden equation, presumed to describe the
pressure χ at radius r within a star, can be put in
the form

(13) rn−1 d2χ
dr2

= −χn,

with boundary conditions χ(0) = 0, χ′(0) = 1, and
positive real constant n, all of this giving rise to
a unique trajectory χn(r) on r ∈ [0,∞). (Some au-
thors invoke the substitution χ(r) := rθ(r) to get
an equivalent ODE for temperature θ; see [30].) The
beautiful thing is, where this pressure trajectory
crosses zero for positive radius r is supposed to
be the star radius ; call that zero zn.

Amazingly, the Lane-Emden equation has
known exact solutions for n = 0,1,5, the pressure

trajectories for which indices n being respectively

χ0(r) = −
1
6
r3 + r ,(14)

χ1(r) = sin r ,(15)

χ5(r) =
r√

1+ r2/3
.(16)

The respective star radii are thus closed forms
z0 =

√
6 and z1 = π , while for (16), with index

n = 5 we have infinite star radius (no positive zero
for the pressure χ5).

In the spirit of our previous optics example,
the Lane-Emden equation is a simplification of
a complicated underlying theory—in this astro-
physics case, hydrodynamics—and one is rewarded
by some closed-form star radii. But what about, say,
index n = 2? We do not know a closed-form func-
tion for the χ trajectory in any convenient sense.
What the present authors have calculated (in 2005)
is the n = 2 star radius, as a high-precision number

z2 = 4.352874595946124676973570061526142628112365363213008835302151 . . . .

If only we could gain a closed form for this special
radius, we might be able to guess the nature of the
whole trajectory! �

Recent Examples Relating to Our Own Work

Example 12 (Ising integrals [5], [8]). We recently
studied the following classes of integrals [5]. The
Dn integrals arise in the Ising model of mathemat-
ical physics (showing ferromagnetic temperature-
driven phase shifts; see Figure 5 and [32]), and the
Cn have tight connections to quantum field theory
[8]:

Cn =
4
n!

∫∞
0
· · ·

∫∞
0

1(∑n
j=1(uj + 1/uj)

)2
du1

u1
· · · dun

un
,

Dn =
4
n!

∫∞
0
· · ·

∫∞
0

∏
i<j

(
ui−uj
ui+uj

)2

(∑n
j=1(uj + 1/uj)

)2
du1

u1
· · · dun

un
,

En = 2
∫ 1

0
· · ·

∫ 1

0

 ∏
1≤j<k≤n

uk − uj
uk + uj

2

dt2 dt3 · · ·dtn,

where (in the last line) uk =
∏k
i=1 ti .

Needless to say, evaluating these multidimen-
sional integrals to high precision presents a daunt-
ing computational challenge. Fortunately, in the
first case, the Cn integrals can be written as one-
dimensional integrals:

Cn =
2n

n!

∫∞
0
pKn0 (p)dp,

where K0 is the modified Bessel function. After com-
puting Cn to 1000-digit accuracy for various n, we
were able to identify the first few instances of Cn
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(a) Critical temperature

(b) Wolfram Player Demonstration

Figure 5. The 2-dimensional Ising Model of
Ferromagnetism (a) plotting magnetization CCC

(blue, with peak) and specific heatMMM (red,
decaying) per site against absolute temperature

TTT (image provided by Jacques Perk) [44,
pp. 91–93, 245].

in terms of well-known constants, e.g.,

C3 = L−3(2) :=
∑
n≥0

(
1

(3n+ 1)2
− 1
(3n+ 2)2

)
,

C4 =
7

12
ζ(3),

where ζ denotes the Riemann zeta function. When
we computed Cn for fairly large n, for instance,
C1024 = 0.63047350337438679612204019271087890435458707871273234 . . . ,

we found that these values rather quickly ap-
proached a limit. By using the new edition of the
Inverse Symbolic Calculator,8 we identified this

8Available at http://isc2.carma.newcastle.edu.au/.

numerical value as

lim
n→∞

Cn = 2e−2γ ,

where γ is the Euler constant ; see the section “Pro-
found Curiosities”. We later were able to prove this
fact—this is merely the first term of an asymptotic
expansion—and thus showed that the Cn integrals
are fundamental in this context [5].

The integrals Dn and En are much more diffi-
cult to evaluate, since they are not reducible to
one-dimensional integrals (as far as we can tell);
but with certain symmetry transformations and
symbolic integration we were able to symbolically
reduce the dimension in each case by one or two.

In the case of D5 and E5, the resulting 3-D inte-
grands are extremely complicated (see Figure 6),
but we were nonetheless able to numerically evalu-
ate these to at least 240-digit precision on a highly
parallel computer system. This would have been
impossible without the symbolic reduction. We
give the integral in extenso to show the difference
between a humanly accessible answer and one a
computer finds useful.

In this way, we produced the following evalua-
tions, all of which, except the last, we subsequently
were able to prove:

D2 = 1/3,

D3 = 8+ 4π2/3− 27 L−3(2),

D4 = 4π2/9− 1/6− 7ζ(3)/2,
E2 = 6− 8 log 2,

E3 = 10− 2π2 − 8 log 2+ 32 log2 2,

E4 = 22− 82ζ(3)− 24 log 2+ 176 log2 2,

− 256(log3 2)/3+ 16π2 log 2− 22π2/3,

and

E5
?= 42− 1984 Li4(1/2)+ 189π4/10− 74ζ(3)

(17)

− 1272ζ(3) log 2+ 40π2 log2 2

− 62π2/3+ 40(π2 log 2)/3+ 88 log4 2

+ 464 log2 2− 40 log 2,

where Li denotes the polylogarithm function.
In the case of D2, D3, and D4, these are confir-

mations of known results. We tried but failed to
recognize D5 in terms of similar constants (the
500-digit numerical value is accessible9 if anyone
wishes to try to find a closed form or, in the manner
of the hard sciences, to confirm our data values).
The conjectured identity shown here for E5 was
confirmed to 240-digit accuracy, which is 180 digits
beyond the level that could reasonably be ascribed
to numerical round-off error. Thus we are quite

9Available at http://crd.lbl.gov/~dhbailey/
dhbpapers/ising-data.pdf.
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E5 =
∫ 1

0

∫ 1

0

∫ 1

0

[
2(1− x)2(1− y)2(1− xy)2(1− z)2(1− yz)2(1− xyz)2(

−
[
4(x+ 1)(xy + 1) log(2)

(
y5z3x7−y4z2(4(y + 1)z + 3)x6 − y3z

((
y2 + 1

)
z2

+4(y + 1)z + 5) x5 + y2
(
4y(y + 1)z3 + 3

(
y2 + 1

)
z2 + 4(y + 1)z − 1

)
x4

+y
(
z
(
z2 + 4z + 5

)
y2 + 4

(
z2 + 1

)
y + 5z + 4

)
x3 +

((
−3z2 − 4z + 1

)
y2

−4zy + 1) x2 − (y(5z + 4)+ 4)x− 1
)]
/
[
(x− 1)3(xy − 1)3(xyz − 1)3

]
+
[
3(y − 1)2y4(z − 1)2z2(yz − 1)2x6 + 2y3z

(
3(z − 1)2z3y5 + z2

(
5z3 + 3z2

+3z + 5) y4 + (z − 1)2z
(
5z2 + 16z + 5

)
y3 +

(
3z5 + 3z4 − 22z3 − 22z2

+3z + 3) y2 + 3
(
−2z4 + z3 + 2z2 + z − 2

)
y + 3z3 + 5z2 + 5z + 3

)
x5

+ y2
(
7(z − 1)2z4y6 − 2z3

(
z3 + 15z2 + 15z + 1

)
y5 + 2z2

(
−21z4 + 6z3

+14z2 + 6z − 21
)
y4 − 2z

(
z5 − 6z4 − 27z3 − 27z2 − 6z + 1

)
y3 +

(
7z6

−30z5 + 28z4 + 54z3 + 28z2 − 30z + 7
)
y2 − 2

(
7z5 + 15z4 − 6z3 − 6z2 + 15z

+7) y + 7z4 − 2z3 − 42z2 − 2z + 7
)
x4 − 2y

(
z3

(
z3 − 9z2 − 9z + 1

)
y6

+ z2
(
7z4 − 14z3 − 18z2 − 14z + 7

)
y5 + z

(
7z5 + 14z4 + 3z3 + 3z2 + 14z

+7) y4 +
(
z6 − 14z5 + 3z4 + 84z3 + 3z2 − 14z + 1

)
y3 − 3

(
3z5 + 6z4 − z3

−z2 + 6z + 3
)
y2 −

(
9z4 + 14z3 − 14z2 + 14z + 9

)
y + z3 + 7z2 + 7z + 1

)
x3

+
(
z2

(
11z4 + 6z3 − 66z2 + 6z + 11

)
y6 + 2z

(
5z5 + 13z4 − 2z3 − 2z2 + 13z

+5) y5 +
(
11z6 + 26z5 + 44z4 − 66z3 + 44z2 + 26z + 11

)
y4 +

(
6z5 − 4z4

−66z3 − 66z2 − 4z + 6
)
y3 − 2

(
33z4 + 2z3 − 22z2 + 2z + 33

)
y2 +

(
6z3

+26z + 6) y + 11z2 + 10z + 11
)
x2 − 2

(
z2

(
5z3 + 3z2 + 3z + 5

)
y5

+ z
(
22z4 + 5z3 − 22z2 + 5z + 22

)
y4 +

(
5z5 + 5z4 − 26z3 − 26z2 + 5z + 5

)
y3

+
(
3z4 − 22z3 − 26z2 − 22z + 3

)
y2 +

(
3z3 + 5z2 + 5z + 3

)
y + 5z2 + 22z + 5

)
x

+ 15z2 + 2z + 2y(z − 1)2(z + 1)+ 2y3(z − 1)2z(z + 1)+ y4z2
(
15z2 + 2z + 15

)
+y2

(
15z4 − 2z3 − 90z2 − 2z + 15

)
+ 15

]
/
[
(x− 1)2(y − 1)2(xy − 1)2(z − 1)2

(yz − 1)2(xyz − 1)2
]
−
[
4(x+ 1)(y + 1)(yz + 1)

(
−z2y4 + 4z(z + 1)y3

+
(
z2 + 1

)
y2 − 4(z + 1)y + 4x

(
y2 − 1

)(
y2z2 − 1

)
+ x2

(
z2y4 − 4z(z + 1)y3

−
(
z2 + 1

)
y2 + 4(z + 1)y + 1

)
− 1

)
log(x+ 1)

]
/
[
(x− 1)3x(y − 1)3(yz − 1)3

]
−
[
4(y + 1)(xy + 1)(z + 1)

(
x2

(
z2 − 4z − 1

)
y4 + 4x(x+ 1)

(
z2 − 1

)
y3

−
(
x2 + 1

)(
z2 − 4z − 1

)
y2 − 4(x+ 1)

(
z2 − 1

)
y + z2 − 4z − 1

)
log(xy + 1)

]
/[

x(y − 1)3y(xy − 1)3(z − 1)3
]
−
[
4(z + 1)(yz + 1)

(
x3y5z7 + x2y4(4x(y + 1)

+ 5)z6 − xy3
((
y2 + 1

)
x2 − 4(y + 1)x− 3

)
z5 − y2

(
4y(y + 1)x3 + 5

(
y2 + 1

)
x2

+4(y + 1)x+ 1) z4 + y
(
y2x3 − 4y(y + 1)x2 − 3

(
y2 + 1

)
x− 4(y + 1)

)
z3

+
(
5x2y2 + y2 + 4x(y + 1)y + 1

)
z2 + ((3x+ 4)y + 4)z − 1

)
log(xyz + 1)

]
/[

xy(z − 1)3z(yz − 1)3(xyz − 1)3
])]

/
[
(x+ 1)2(y + 1)2(xy + 1)2(z + 1)2(yz + 1)2(xyz + 1)2

]
dxdy dz.

Figure 6. The reduced multidimensional integral
for E5, which integral has led via
extreme-precision numerical quadrature and
PSLQ to the conjectured closed form given in
(17).

confident in this result, even though we do not
have a formal proof [5].

Note that every one of the D,E forms above,
including the conjectured last one, is hyperclosed
in the sense of our “Sixth Approach” section. �

Example 13 (Weakly coupling oscillators [49], [6]).
In an important analysis of coupled Winfree oscil-
lators, Quinn, Rand, and Strogatz [49] developed
a certain N-oscillator scenario whose bifurca-
tion phase offset φ is implicitly defined, with a
conjectured asymptotic behavior: sinφ ∼ 1−c1/N,

with experimental estimate c1 = 0.605443657 . . . .
In [6] we were able to derive the exact theoretical
value of this “QRS constant” c1 as the unique zero
of the Hurwitz zeta ζ(1/2, z/2) on z ∈ (0,2). In
so doing, we were able to prove the conjectured
behavior. Moreover, we were able to sketch the
higher-order asymptotic behavior, something that
would have been impossible without discovery of
an analytic formula.

Does this deserve to be called a closed form?
In our opinion, resoundingly yes unless all inverse
functions such as that in Bornemann’s (12) are to be
eschewed. Such constants are especially interesting
in light of even more recent work by Steve Strogatz
and his collaborators on chimera, coupled systems
which can self-organize in parts of their domain
and remain disorganized elsewhere; see Figure 7
taken from [43]. In this case, observed numerical
limits still need to be put in closed form. �

It is a frequent experience of ours that, as in
Example 13, the need for high-accuracy computa-
tion drives the development of effective analytic
expressions (closed forms?), which in turn typically
shed substantial light on the subject being studied.

Example 14 (Box integrals [3], [7], [23]). There has
been recent research on the calculation of the ex-
pected distance of points inside a hypercube to the
hypercube. Such expectations are also called “box
integrals” [23]. So, for example, the expectation
〈|~r |〉 for random ~r ∈ [0,1]3 has the closed form

1
4

√
3− 1

24
π + 1

2
log

(
2+
√

3
)
.

Incidentally, box integrals are not just a math-
ematician’s curiosity; the integrals have been
used recently to assess the randomness of brain
synapses positioned within a parallelepiped [38].
Indeed, we had cognate results for

∆d(s) :=
∫
[0,1]d

∫
[0,1]d

‖x− y‖s2 dxdy,

which gives the moments of the distance between
two points in the hypercube.

In a lovely recent paper [52] Stephan Steiner-
berger has shown that in the limit, as the dimension
goes to infinity,

lim
d→∞

(
1
d

)s/p ∫
[0,1]d

∫
[0,1]d

‖x− y‖sp dxdy(18)

=
(

2
(p + 1)(p + 2)

)s/p
for any s, p > 0. In particular, with p = 2, this
gives a first-order answer to our earlier published
request for the asymptotic behavior of ∆d(s).

A quite recent result is that all box integrals
〈|~r |n〉 for integer n and dimensions 1,2,3,4,5 are
hyperclosed, in the sense of our “Sixth Approach”
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Figure 7. Simulated chimera (figures and parameters from [43]).

section. It turns out that five-dimensional box in-
tegrals have been especially difficult, depending
on knowledge of a hyperclosed form for a single
definite integral J(3), where

(19) J(t) :=
∫
[0,1]2

log(t + x2 + y2)
(1+ x2)(1+ y2)

dxdy.

A proof of hyperclosure of J(t) for algebraic t ≥ 0
is established in [23, Thm. 5.1]. Thus 〈|~r |−2〉 for ~r ∈
[0,1]5 can be written in explicit hyperclosed form
involving a 105-character symbolic J(3); the au-
thors of [23] were able to reduce the 5-dimensional
box integral down to “only” 104 characters. A com-
panion integral J(2) also starts out with about 105

characters but reduces stunningly to only a few
dozen characters, namely,

J(2) = π
2

8
log 2− 7

48
ζ(3)+ 11

24
π Cl2

(
π
6

)
(20)

− 29
24
π Cl2

(
5π
6

)
,

where Cl2 is the Clausen function Cl2(θ) :=∑
n≥1 sin(nθ)/n2 (Cl2 is the simplest nonelemen-

tary Fourier series).
Automating such reductions will require a

sophisticated simplification scheme with a very
large and extensible knowledge base. With a
current research assistant, Alex Kaiser at Berke-
ley, we have started to design software to refine
and automate this process and to run it before
submission of any equation-rich paper (see [9]).
This semi-automated integrity checking becomes
pressing when, as above, verifiable output from
a symbolic manipulation can be the length of a
Salinger novella. �

Profound Curiosities
In our treatment of numbers enjoying hyperclosure
or superclosure, we admitted that such numbers
are countable, and so almost all complex num-
bers cannot be given a closed form along such
lines. What is stultifying is: How do we identify an
explicit number lying outside such countable sets?
The situation is tantamount to the modern bind
in regard to normal numbers, numbers which to
some base have statistically random digit structure
in a certain technical sense. The bind is, though
almost all numbers are absolutely normal (i.e.,
normal to every base 2,3, . . . ), we do not know
a single fundamental constant that is provably
absolutely normal. (We do know some “artificial”
normal numbers; see [14].)

Here is one possible way out of the dilemma.
In the theory of computability, the existence of
noncomputable real numbers, such as an encoded
list of halting Turing machines, is well established.
The celebrated Chaitin constant Ω is a well-known
noncomputable. So a “folk” argument goes: Since
every element of the ring of hyperclosure H can be
computed via converging series, it should be thatΩ 6∈ H. A good research problem would be to make
this heuristic rigorous.

Let us focus on some constants that might
not be hyperclosed (nor superclosed). One
such constant is the celebrated Euler constant
γ := limn→∞

∑n
k=1 1/k − logn. We know of no

hypergeometric form for γ; said constant may well
lie outside H (or even S). There are expansions for
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(a) NaCl nearest neighbors

(b) CMS Prize Sculpture

Figure 8. Two representations of salt.

the Euler constant, such as

γ = logπ−4 log Γ (3
4

)
+ 4
π

∑
k≥1

(−1)k+1 log(2k+ 1)
2k+ 1

,

and even more exotic series (see [13]). But in the
spirit of the present treatment, we do not want
to call the infinite series closed, because it is not
hypergeometric per se. Relatedly, the classical
Bessel expansion is

K0(z)= −
(

ln
(
z
2

)
+ γ

)
I0(z)+

∞∑
n=1

∑n−1
k=1

1
k

(n!)2

(
z2

4

)n
.

Now K0(z) has a (degenerate) Meijer-G
representation—so potentially is superclosed for
algebraic z—and I0(z) is accordingly hyperclosed,
but the nested harmonic series on the right is
again problematic. Again, γ is conjectured not to
be a period [42].

Example 15 (Madelung constant [22], [37], [58]).
Another fascinating number is the Madelung con-
stant, M, of chemistry and physics [22, Section
9.3]. This is the potential energy at the origin of
an oscillating-charge crystal structure (most often

said crystal is NaCl (salt), as illustrated in Figure
8). Image (b) is of a Helaman Ferguson sculpture
based on M which is awarded biannually by the
Canadian Mathematical Society as part of the David
Borwein Career Award) and is given by the formal
(conditionally convergent [18]) sum

M :=
∑

(x,y,z)6=(0,0,0)

(−1)x+y+z√
x2 + y2 + z2

(21)

= −1.747564594633...

and has never been given what a reasonable
observer would call a closed form. Nature plays
an interesting trick here: There are other crystal
structures that are tractable, yet somehow this
exquisitely symmetrical salt structure remains
elusive. In general, even-dimensional crystal sums
are more tractable than odd for the same modular
function reasons that the number of representa-
tions of a number as the sum of an even number
of squares is. But this does not make them easy,
as illustrated by Example 2.

Here we have another example of a constant
having no known closed form yet is rapidly calcu-
lable. A classical rapid expansion for the Madelung
constant is due to Benson:
(22)

M=−12π
∑
m,n≥0

sech2
(
π
2

√
(2m+ 1)2+(2n+ 1)2

)
,

in which convergence is exponential. Summing for
m,n ≤ 3 produces −1.747564594 . . . , correct to
eight digits. There are a great many other such
formulae forM (see [22], [35]).

Through the analytic methods of Buhler, Cran-
dall, Tyagi, and Zucker since 1999 (see [35], [37],
[55], [58]), we now know approximations such as

M ≈ −1
8
− log 2

4π
+8π

3
+ 1√

8
+
Γ( 1

8)Γ( 3
8)

π3/2
√

2
+log

k2
4

16k′4
,

where k4 := ((21/4 − 1)/(21/4 + 1))2. Two remark-
able things: First, this approximation is good to the
same thirteen decimals we give in (21); the miss-
ing O(10−14) error here is a rapidly, exponentially
converging—but alas infinite—sum in this modern
approximation theory. Second, this six-term ap-
proximation itself is indeed hyperclosed, the only
problematic term being the Γ -function part, but we
did establish in our “Sixth Approach” section that
B(1/8,3/8) and also 1/π are hyperclosed, which is
enough. Moreover, the work of Borwein and Zucker
[27] also settles hyperclosure for that term. �

Certainly we have nothing like a proof, or even
the beginnings of one, thatM (or γ) lies outside H
(or even S), but we ask on an intuitive basis, Is a
constant such as the mighty M telling us that it
is not hyperclosed, in that our toil only seems to
bring more “closed-form” terms into play, with no
exact resolution in sight?
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Concluding Remarks and Open Problems
•We have posited several approaches to the elusive
notion of “closed form”, but what are the intersec-
tions and interrelations of said approaches? For
example, can our “Fourth Approach” be precisely
absorbed into the evidently more general “Sixth
Approach” (hyperclosure and superclosure)?

• How do we find a single number that is provably
not in the ring of hyperclosureH? (Though no such
number is yet known, almost all numbers are, as
noted, not in said ring!) The same question persists
for the ring of superclosure, S. Furthermore, how
precisely can one create a field out of HH via
appropriate operator extension?

• Though H is a subset of S, how might one prove
that H 6= S? (Is the inequality even true?) Likewise,
is the set of closed forms in the sense of [48, Ch. 8]
(only finite linear combinations of hypergeometric
evaluations) properly contained in our H? And
what about a construct such as HH

H
? Should such

an entity be anything really new? Lest one remark
on the folly of such constructions, we observe that
most everyone would say πππ is a closed form!

• Having established the property of hyperclosure
for Γb(a/b), are there any cases where the power
b may be brought down? For example, 1/π is
hyperclosed, but what about 1/

√
π?

• What is a precise connection between the ring
of hyperclosure (or superclosure) and the set of
periods or of Mahler measures (as in Example 3)?

• There is expounded in reference [23] a theory of
“expression entropy”, whereby some fundamental
entropy estimate gives the true complexity of
an expression. So, for example, an expression
having one thousand instances of the polylog
token Li3 might really involve only about 1,000
characters, with that polylogarithm token encoded
as a single character, say. (In fact, during the
research for [23] it was noted that the entropy
of Maple and Mathematica expressions of the
same entity often had widely varying text-character
counts but similar entropy assessments.)

On the other hand, one basic notion of “closed
form” is that explicitly infinite sums not be allowed.
Can these two concepts be reconciled? Meaning,
can we develop a theory of expression entropy
by which an explicit, infinite sum is given infinite
entropy? This might be difficult, as, for example,
a sum

∑∞
n=1

1
n3/2 takes only a few characters to

symbolize, as we just did! If one can succeed,
though, in thus resolving the entropy business for
expressions, “closed form” might be rephrased as
“finite entropy”.

In any event, we feel strongly that the value
of closed forms increases as the complexity of
the objects we manipulate computationally and
inspect mathematically grows, and we hope we

have illustrated this. Moreover, we belong to the
subset of mathematicians that finds fun in finding
unanticipated closed forms.
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