1887

Abstract

Hybridization of cloned ribosomal sequences to RI-restricted genomic deoxyribonucleic acids of eight species and strains of the genus produced multiband patterns consistent with the presence of 9 to 11 operons per genome. The basic structure of the repeating ribosomal gene set is highly conserved with the exception of one internalRI site located near the abutment region between the 16S and 23S ribosomal ribonucleic acid determinants. In each of the species studied, there are two abutment regions that differ in size by 0.2 kilobase; the larger region contains genes for isoleucine and alanine transfer ribonucleic acids at one-third the proportion of the smaller region. The occurrence of the RI site in strains of and gave rise upon cleavage to 1.2- and 1.4-kilobase abutment families. The absence of the RI site in , and resulted in the emergence of 1.9- and 2.1-kilobase abutment families. Mixtures of the two types of families were not found in the genomes studied.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-35-3-244
1985-07-01
2024-04-16
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/35/3/ijs-35-3-244.html?itemId=/content/journal/ijsem/10.1099/00207713-35-3-244&mimeType=html&fmt=ahah

References

  1. Anilionis A., Riley M. 1980; Conservation and variation of nucleotide sequences within related bacterial genomes: Escherichia coli strains. J. Bacteriol 143:355–365
    [Google Scholar]
  2. Bearden J. 1979; Electrophoretic mobility of high molecular weight double strand DNA on agarose gels. Gene 6:221–234
    [Google Scholar]
  3. Chilton M. D., McCarthy B. J. 1969; Genetic and base sequence homologies in bacilli. Genetics 62:697–710
    [Google Scholar]
  4. Ferrari F. A., Nguyen A., Lang D., Hoch J. A. 1983; Construction and properties of an integrable plasmid for Bacillus subtilis . J. Bacteriol 154:1513–1515
    [Google Scholar]
  5. Graf L., Kussel H., Stutz E. 1980; Sequencing of 16S-23S spacer in a ribosomal RNA operon of Euglena gracilis chloroplast DNA reveals two tRNA genes. Nature (London) 286:908–910
    [Google Scholar]
  6. Hemphill H., Whiteley H. R. 1975; Bacteriophages of Bacillus subtilis. Bacteriol. Rev 39:257–315
    [Google Scholar]
  7. Hutchison K. W., Halvorson H. O. 1980; Cloning of randomly sheared DNA fragments from a ϕ105 lysogen of Bacillus subtilis: identification of prophage-containing clones. Gene 8:267–278
    [Google Scholar]
  8. Koch W., Edwards K., Kussel H. 1981; Sequencing of the 16S-23S spacer in a ribosomal RNA operon of Zea mays chloroplast DNA reveals two split tRNA genes. Cell 25:203–213
    [Google Scholar]
  9. Loughney K., Lund E., Dahlberg J. E. 1982; tRNA genes are found between the 16S and 23S rRNA in Bacillus subtilis . Nucleic Acids Res 10:1607–1624
    [Google Scholar]
  10. Lovett P. S., Young F. E. 1969; Identification of Bacillus subtilis NRRL B-3275 as a strain of Bacillus pumilus . J. Bacteriol 100:658–661
    [Google Scholar]
  11. Maizels N. 1977; RNA labeling mediated by T4 polynucleotide kinase. 247–251 Wulcox G., Abelson J., Fox C. F. ICN-UCLA Symposium on Molecular and Cellular Biology 8 Academic Press, Inc; New York:
    [Google Scholar]
  12. Marguiles L., Remeza V., Rudner R. 1971; Asymmetric template function of microbial deoxyribonucleic acids: transcription of messenger ribonucleic acid. J. Bacteriol 107:610–617
    [Google Scholar]
  13. Marmur J. 1961; A procedure for the isolation of DNA from microorganisms. J. Mol. Biol 3:208–218
    [Google Scholar]
  14. Nomura M., Post L. E. 1980; Organization of ribosomal genes and regulation of their expression in Escherichia coli . 671–691 Chambliss G., Craven G. R., Davis K., Cahan L., Nomura M. Ribosomes: structure, function and genetics University Park Press; Baltimore:
    [Google Scholar]
  15. Ogasawara N., Seiki M., Yoshikawa H. 1983; Replication origin region of Bacillus subtilis contains two rRNA operons. J. Bacteriol 154:50–57
    [Google Scholar]
  16. Ostapchuk P., Anilionis A., Riley M. 1980; Conserved genes in enteric bacteria are not identical. Mol. Gen. Genet 180:475–477
    [Google Scholar]
  17. Pace N., Pato M., McKibbin J., Radcliffe C. 1973; Precursors of 5S ribosomal RNA in Bacillus subtilis . J. Mol. Biol 75:475–477
    [Google Scholar]
  18. Rigby P. W. J., Dieckmann M., Rhodes C., Berg P. 1977; Labeling deoxyribonucleic acid to high specific activity in vitro by nick translation with DNA polymerase. I. J. Mol. Biol 113:237–251
    [Google Scholar]
  19. Rudner R., Lin H., Hoffman S., Chargaff E. 1967; Studies on the loss and restoration of transforming activity of the DNA of B subtilis . Biochim. Biophys. Acta 144:199–219
    [Google Scholar]
  20. Seiki M., Ogasawara N., Yoshikawa H. 1981; Structure and function of the region of the replication origin of the B subtilis chromosome. I. Isolation and characterization of plasmids containing the origin region. Mol. Gen. Genet 183:220–226
    [Google Scholar]
  21. Seki T., Oshima T., Oshima Y. 1975; Taxonomic study of Bacillus by deoxyribonucleic acid-deoxyribonucleic acid hybridization and interspecific transformation. Int. J. Syst. Bacteriol 25:258–270
    [Google Scholar]
  22. Smith B. 1974; Unequal crossover and the evolution of multigene families. Cold Spring Harbor Symp. Quant. Biol 38:504–513
    [Google Scholar]
  23. Smith I., Dubnau D., Morell P., Marmur J. 1968; Chromosomal location of DNA base sequences complementary to transfer RNA and to 5S, 16S and 23S ribosomal RNA in Bacillus subtilis . J. Mol. Biol 33:123–140
    [Google Scholar]
  24. Southern E. 1975; Detection of specific sequences among DNA fragments separated by gel electrophoresis. J. Mol. Biol 98:503–517
    [Google Scholar]
  25. Stewart G., Wilson F., Bott K. 1982; Detailed physical mapping of the ribosomal RNA genes of Bacillus subtilis . Gene 19:153–162
    [Google Scholar]
  26. Tackney C, Rudner R. 1981; Genetic and nucleotide sequence homologies in Bacillus genomes. Mol. Gen. Genet 183:234–237
    [Google Scholar]
  27. Tanaka T., Weisblum B. 1975; Construction of a colicin El-R factor composite plasmid in vitro: means for amplification of deoxyribonucleic acid. J. Bacteriol 121:354–362
    [Google Scholar]
  28. Wilson F., Hoch J., Bott K. 1981; Genetic mapping of a linked cluster of ribosomal ribonucleic acid genes in Bacillus subtilis . J. Bacteriol 148:624–628
    [Google Scholar]
  29. Young R., Bram R., Steitz J. 1980; rRNA and tRNA processing signals in the rRNA operons of Escherichia coli . 99–106 Sull D., Abelson J. A., Schimmel R. R. Transfer RNA: biological aspects Cold Spring Harbor Laboratory Press; Cold Spring Harbor, N.Y:
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-35-3-244
Loading
/content/journal/ijsem/10.1099/00207713-35-3-244
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error