1887

Abstract

The phylogeny and taxonomy of the mesophilic methane-producing archaea of the order were examined by DNA relatedness, 16S rRNA sequence analysis, cellular protein pattern, and phenotypic methods. The mesophilic species , and “” formed a deep group with 5 to 30% DNA relatedness and 92 to 96% 16S rRNA sequence similarity. Twenty-two additional isolates and were similar to the type strain of either or . Two isolates, strains A2 and A3, exhibited 37% DNA relatedness and 99.2% 16S rRNA sequence similarity to PS (T = type strain). In the absence of phenotypic differences, these organisms were assigned to . Similarly, four autotrophic isolates, strains C5, C6, C7, and C8, exhibited 54 to 69% DNA relatedness and 99.2% 16S rRNA sequence similarity to JJ and were assigned to . While these isolates were sufficiently genetically diverse to justify classification in novel species, few differences were apparent in the phenotypic properties available for measurement. Thus, the phenotypic properties of these lithotrophic archaea were highly conserved and poor indicators of genetic diversity. Partial sequencing of about 200 bases of both the 16S and 23S rRNAs of the isolates demonstrated allelic diversity within methanococcal species. This allelic diversity did not correlate with diversity measured by DNA relatedness, cellular protein pattern, and other methods. Similarly, antisera to whole cells of the type strains did not cross-react strongly to whole cells of strains that were genetically similar, and serological cross-reactivity was not a useful taxonomic method for methanococci. Lastly, on the basis of the results of 16S rRNA sequence analyses and biochemical data, the ancestor of the mesophilic methanococci may have been an autotrophic thermophile.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-46-3-727
1996-07-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/46/3/ijs-46-3-727.html?itemId=/content/journal/ijsem/10.1099/00207713-46-3-727&mimeType=html&fmt=ahah

References

  1. Amann R. I., Lin C., Key R., Montgomery L., Stahl D. A. 1992; Diversity among Fibrobacter isolates: towards a phylogenetic classification. Syst. Appl. Microbiol 15:23–31
    [Google Scholar]
  2. Avise J. C. 1994 Molecular markers, natural history, and evolution Chapman & Hall; New York:
    [Google Scholar]
  3. Boone D. R., Whitman W. B. 1988; Proposal of minimal standards for describing new taxa of methanogenic bacteria. Int. J. Syst. Bacteriol 38:212–219
    [Google Scholar]
  4. Boone D. R., Whitman W. B., Rouviere P. 1993 Diversity and taxonomy of methanogens. 35–80 Ferry J. G.ed Methanogenesis Chapman and Hall, Inc.; New York:
    [Google Scholar]
  5. Brosius J., Palmer M. L., Kennedy P. J., Noller H. F. 1978; Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichia coli. Proc. Natl. Acad. Sci. USA 75:4801–4805
    [Google Scholar]
  6. Burggraf S., Fricke H., Neuner A., Krisansson J., Rouviere P., Mandelco L., Woese C. R., Stetter K. O. 1990; Methanococcus igneus sp. nov., a novel hyperthermophilic methanogen from a shallow submarine hydrothermal system. Syst. Appl. Microbiol 13:263–269
    [Google Scholar]
  7. Collins M. D., Lawson P. A., Willems A., Cordoba J. J., Fernandez-Garayzabal J., Garcia P., Cai J., Hippe H., Farrow J. A. E. 1994; The phylogeny of the genus Clostridium: proposal of five new genera and eleven new species combinations. Int. J. Syst. Bacteriol 44:812–826
    [Google Scholar]
  8. Conway de Macario E., Wolin M. J., Macario A. J. L. 1981; Immunology of archaebacteria that produce methane gas. Science 214:74–75
    [Google Scholar]
  9. Corder R. E., Hook L. A., Larkin J. M., Frea J. I. 1983; Isolation and characterization of two new methane-producing cocci: Methanogenium olentangyi, sp. nov., and Methanococcus deltae, sp. nov. Arch. Microbiol 134:2832
    [Google Scholar]
  10. Devereux J., Haeberli P., Smithies O. 1984; A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res 12:387–395
    [Google Scholar]
  11. Devereux R., He S.-H., Doyle C. L., Orkland S., Stahl D. A., LeGall J., Whitman W. B. 1990; Diversity and origin of Desulfovibrio species: phylogenetic definition of a family. J. Bacteriol 172:3609–3619
    [Google Scholar]
  12. Felsenstein J. 1982; Numerical methods for inferring evolutionary trees. Q. Rev. Biol 57:379–404
    [Google Scholar]
  13. Felsenstein J. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791
    [Google Scholar]
  14. Felsenstein J. 1991 PHYLIP–phylogeny inference package, version 3.4 Department of Genetics; University of Washington, Seattle:
    [Google Scholar]
  15. Fitch W. M., Margoliash E. 1967; Construction of phylogenetic trees: a method based on mutation distances as estimated from cytochrome c sequences is of general applicability. Science 155:278–284
    [Google Scholar]
  16. Fox G. E., Wisotzkey J. D., Jurtshuk P. 1992; How close is close: 16S rRNA sequence identity may not be sufficient to guarantee species identity. Int. J. Syst. Bacteriol 42:166–170
    [Google Scholar]
  17. Franklin M. J., Wiebe W. J., Whitman W. B. 1988; Populations of methanogenic bacteria in a Georgia salt marsh. AppL Environ. Microbiol 54:1151–1157
    [Google Scholar]
  18. Huber H., Thomm M., Konig H., Thies G., Stetter K. O. 1982; Methanococcus themolithotrophicus, a novel thermophilic lithotrophic methanogen. Arch. Microbiol 132:47–50
    [Google Scholar]
  19. Jackman P. J. H. 1987; Microbial systematics based on electrophoretic whole-cell protein patterns. Methods Microbiol 19:209–225
    [Google Scholar]
  20. Jarsch M., Bock A. 1985; Sequence of the 16S ribosomal RNA gene from Methanococcus vannielii,. evolutionary implications. Syst. Appl. Microbiol 6:54–59
    [Google Scholar]
  21. Jarsch M., Bock A. 1985; Sequence of the 23S rRNA gene from the archaebacterium Methanococcus vannielii’. evolutionary and functional implications. Mol. Gen. Genet 200:305–312
    [Google Scholar]
  22. Johnson J. L. 1985; DNA reassociation and RNA hybridization of bacterial nucleic acids. Methods Microbiol 18:33–74
    [Google Scholar]
  23. Jones W. J., Leigh J. A., Mayer F., Woese C. R., Wolfe R. S. 1983; Methanococcus jannaschii sp. nov., an extremely thermophilic methanogen from a submarine hydrothermal vent. Arch. Microbiol 136:254–261
    [Google Scholar]
  24. Jones W. J., Paynter M. J. B., Gupta R. 1983; Characterization of Methanococcus maripaludis sp. nov., a new methanogen isolated from salt marsh sediment. Arch. Microbiol 135:91–97
    [Google Scholar]
  25. Kersters K. 1985 Numerical methods in the classification of bacteria by protein electrophoresis. 337–468 Goodfellow J. A. P.ed Computerassisted bacterial systematics Academic Press; New York:
    [Google Scholar]
  26. Kimura M. 1983 The neutral theory of molecular evolution Cambridge University Press; Cambridge:
    [Google Scholar]
  27. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature (London) 227:680–685
    [Google Scholar]
  28. Lane D. J., Pace B., Olsen G. J., Stahl D. A., Sogin M. L., Pace N. R. 1985; Rapid determination of 16S ribosomal RNA sequences for phylogenetic analysis. Proc. Natl. Acad. Sci. USA 82:6955–6959
    [Google Scholar]
  29. Maniatis T., Fritsch E. F., Sambrook J. 1982 Molecular cloning: a laboratory manual Cold Spring Harbor Laboratory; Cold Spring Harbor, N.Y:
    [Google Scholar]
  30. Martinez-Murcia A. J., Benlloch S., Collins M. D. 1992; Phylogenetic interrelationships of members of the genera Aeromonas and Plesiomonas as determined by 16S ribosomal DNA sequencing: lack of congruence with results of DNA-DNA hybridizations. Int. J. Syst. Bacteriol 42:412–421
    [Google Scholar]
  31. Meakin S. A., Nash J. H. E., Murray W. D., Kennedy K. J., Sprott G. D. 1991; A generally applicable technique for the extraction of restrictable DNA from methanogenic bacteria. J. Microbiol. Methods 14:119–126
    [Google Scholar]
  32. Neumann H., Gierl A., Tu J., Leibrock J., Staiger D., Zillig W. 1983; Organization of the genes for rRNA in archaebacteria. Mol. Gen. Genet 192:66–72
    [Google Scholar]
  33. Olsen G. J. 1987; The earliest phylogenetic branchings comparing rRNA- based evolutionary trees inferred with various techniques. Cold Spring Harbor Symp. Quant. Biol L11:825–833
    [Google Scholar]
  34. Porter D., Sanborn B. M. 1992; Analysis of heat-denatured DNA using native agarose gel electrophoresis. BioTechniques 13:406–410
    [Google Scholar]
  35. Rouviere P., Mandelco L., Winker S., Woese C. R. 1992; A detailed phylogeny for the Methanomicrobiales. Syst. Appl. Microbiol 15:363–371
    [Google Scholar]
  36. Schmidt E. L., Bankole R. O., Bohlool B. B. 1968; Fluorescent-antibody approach to study of rhizobia in soil. J. Bacteriol 95:1987–1992
    [Google Scholar]
  37. Shieh J., Mesbah M., Whitman W. B. 1988; Pseudoauxotrophy of Methanococcus voltae for acetate, leucine, and isoleucine. J. Bacteriol 170:4091–4096
    [Google Scholar]
  38. Sneath P. H. A. 1993; Evidence from Aeromonas for genetic cross-over in ribosomal sequences. Int. J. Syst. Bacteriol 43:626–629
    [Google Scholar]
  39. Sneath P. H. A., Sokal R. R. 1973 Numerical taxonomy. The principles and practice of numerical classification W. H. Freeman; San Francisco:
    [Google Scholar]
  40. Stackebrandt E., Goebel B. M. 1994; Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int. J. Syst. Bacteriol 44:846–849
    [Google Scholar]
  41. Stein A., Saunders N. A., Taylor A. G., Raoult D. 1993; Phylogenetic homogeneity of Coxiella bumettii strains as determined by 16S ribosomal RNA sequencing. FEMS Microbiol. Lett 113:339–344
    [Google Scholar]
  42. Tonjum T., Bukholm G., Bovre K. 1989; Differentiation of some species of Neisseriaceae and other bacterial groups by DNA-DNA hybridization. APMIS 97:395–405
    [Google Scholar]
  43. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E., Stackebrandt E., Starr M. P., Triiper H. G. 1987; Report of the Ad Hoc Committee on Reconciliation of Approaches to Bacterial Systematics. Int. J. Syst. Bacteriol 37:463–464
    [Google Scholar]
  44. Whitman W. B. 1989 Methanococcales. 2185–2190 Staley J. T., Bryant M. P., Pfennig N., Holt J. G.ed Bergey’s manual of systematic bacteriology 3 The Williams & Wilkins Co.; Baltimore:
    [Google Scholar]
  45. Whitman W. B., Shieh J., Sohn S., Caras D. S., Premachandran U. 1986; Isolation and characterization of 22 mesophilic methanococci. Syst. Appl. Microbiol 7:235–240
    [Google Scholar]
  46. Whitman W. B., Sohn S., Kuk S., Xing R. Y. 1987; Role of amino acids and vitamins in nutrition of mesophilic Methanococcus spp. Appl. Environ. Microbiol 53:2373–2378
    [Google Scholar]
  47. Woese C., Achenbach L., Rouviere P., Mandelco L. 1991; Archaeal phylogeny: reexamination of the phylogenetic position of Archaeoglobus fulgidus in light of certain composition-induced artifacts. Syst. Appl. Microbiol 14:364–371
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-46-3-727
Loading
/content/journal/ijsem/10.1099/00207713-46-3-727
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error