1887

Abstract

Phylogenetic analysis was used to examine the evolutionary relationships within a group of coxsackie B viruses that contained representatives of the major serotypes of this group and 45 isolates of swine vesicular disease virus (SVDV) from Asia and Europe. Separate analyses of sequence data from two regions of the viral genomes encoding the VP1 and 3BC genes both revealed that the SVDV belonged to a single monophyletic group which could be clearly distinguished from all other sampled coxsackieviruses. Regression analysis revealed that within the SVDV clade at least 80% of the synonymous variation in evolutionary divergence between isolates was explained by time, indicating the existence of an approximate molecular clock. Calibration of this clock according to synonymous substitutions per year indicated the date of occurrence of a common ancestor for the SVDV clade to be between 1945 and 1965.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-80-3-639
1999-03-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/80/3/0800639a.html?itemId=/content/journal/jgv/10.1099/0022-1317-80-3-639&mimeType=html&fmt=ahah

References

  1. Allaire M., Chernaia M. M., Malcolm B. A., James M. N. G. 1994; Picornaviral 3C cysteine proteinases have a fold similar to chymotrypsin-like serine proteinases. Nature 369:72–76
    [Google Scholar]
  2. Bergmann E. M., Mosimann S. C., Chernaia M. M., Malcolm B. A., James M. N. G. 1997; The refined crystal structure of the 3C gene product from hepatitis-A virus: specific proteinase activity and RNA recognition. Journal of Virology 71:2436–2448
    [Google Scholar]
  3. Brocchi E., Zhang G., Knowles N. J., Wilsden G., McCauley J. W., Marquardt O., Ohlinger V. F., De Simone F. 1997; Molecular epidemiology of recent outbreaks of swine vesicular disease: two genetically and antigenetically distinct variants in Europe, 1987–1994. Epidemiology and Infection 118:51–61
    [Google Scholar]
  4. Brown F., Talbot P., Burrows R. 1973; Antigenic differences between isolates of swine vesicular disease virus and their relationship to coxsackie B5 virus. Nature 245:315–316
    [Google Scholar]
  5. Chang K. H., Auvinen P., Hyypiä T., Stanway G. 1989; The nucleotide sequence of coxsackievirus A9; implications for receptor binding and enterovirus classification. Journal of General Virology 70:3269–3280
    [Google Scholar]
  6. Chatterjee S., Quarcoopome C. O., Apenteng A. 1970; An epidemic of acute conjunctivitis in Ghana. GhanaMedical Journal 9:9–11
    [Google Scholar]
  7. Dahllund L., Nissinen L., Pulli T., Hyttinen V. P., Stanway G., Hyypiä T. 1995; The genome of echovirus 11. Virus Research 35:215–222
    [Google Scholar]
  8. Felsenstein J. 1993 PHYLIP (Phylogeny Inference Package). Version 3.5c Department of Genetics, University of Washington; Seattle, WA, USA:
    [Google Scholar]
  9. Fricks C. E., Hogle J. M. 1990; Cell-induced conformational change in poliovirus: externalization of the amino terminus of VP1 is responsible for liposome binding. Journal of Virology 64:1934–1945
    [Google Scholar]
  10. Graves J. H. 1973; Serological relationships of swine vesicular disease virus and coxsackie B5 virus. Nature 245:314–315
    [Google Scholar]
  11. Gratsch T. E., Righthand V. F. 1994; Construction of a recombinant cDNA of echovirus 6 that established a persistent in vitro infection. Virology 201:341–348
    [Google Scholar]
  12. Hasegawa M., Kishino H., Yano T. 1985; Dating the human–ape splitting by a molecular clock of mitochondrial DNA. Journal of Molecular Evolution 22:160–174
    [Google Scholar]
  13. Hayashida H., Toh H., Kikuno R., Miyata T. 1985; Evolution of influenza virus genes. Molecular Biology and Evolution 24:289–303
    [Google Scholar]
  14. Hillis D. M., Mable B. K., Moritz C. 1996; Applications of molecular systematics: the state of the field and a look to the future. In Molecular Systematics Edited by Hillis D. M., Moritz C., Mable B. K. Sunderland, MA: Sinauer;
    [Google Scholar]
  15. Hogle J. M., Chow M., Filman D. J. 1985; Three-dimensional structure of poliovirus at 2.9 Ǻ resolution. Science 229:1358–1365
    [Google Scholar]
  16. Iizuka N., Kuge S., Nomoto A. 1987; Complete nucleotide sequence of the genome of coxsackievirus B1. Virology 156:64–73
    [Google Scholar]
  17. Inoue T., Suzuki T., Sekiguchi K. 1989; The complete nucleotide sequence of swine vesicular disease virus. Journal of General Virology 70:919–934
    [Google Scholar]
  18. Inoue T., Yamaguchi S., Kanno T., Sugita S., Saeki T. 1993; The complete nucleotide sequence of a pathogenic swine vesicular disease virus isolated in Japan (J1′73) and phylogenetic analysis. Nucleic Acids Research 21:3896
    [Google Scholar]
  19. Ishiko H., Takeda N., Miyamura K., Kato N., Tanimura M., Lin K.-H., Yin-Murphy M., Tam J. S., Mu G. F., Yamazaki S. 1992a; Phylogenetic analysis of a coxsackievirus A24 variant: the most recent worldwide pandemic was caused by progenies of a virus prevalent around 1981. Virology 187:748–759
    [Google Scholar]
  20. Ishiko H., Takeda N., Miyamura K., Tanimura M., Yamanaka T., Kasuga K., Oda K., Imai K., Yamamoto Y., Mochida Y., Uchida K. I., Nakagawa H., Yamazaki S. 1992b; Phylogenetically different strains of a variant of coxsackievirus A24 were repeatedly introduced but discontinued circulating in Japan. Archives of Virology 126:179–193
    [Google Scholar]
  21. Jenkins O., Booth J. D., Minor P. D., Almond J. W. 1987; The complete nucleotide sequence of coxsackievirus B4 and its comparison to other members of the Picornaviridae. Journal of General Virology 68:1835–1848
    [Google Scholar]
  22. Kang Y., Chatterjee N. K., Nodwell M. J., Yoon J. W. 1994; Complete nucleotide sequence of a strain of coxsackie B4 virus of human origin that induces diabetes in mice and its comparison with nondiabetogenic coxsackie B4 JVB strain. Journal of Medical Virology 44:353–361
    [Google Scholar]
  23. Kimura M. 1980; A simple model for estimating evolutionary rate of base substitution through comparative studies of nucleotide sequences. Journal of Molecular Evolution 16:111–120
    [Google Scholar]
  24. Kirkegaard K. 1990; Mutations in VP1 of poliovirus specifically affect both encapsidation and release of viral RNA. Journal of Virology 64:195–206
    [Google Scholar]
  25. Klump W. M., Bergmann I., Mueller B. C., Ameis D., Kandolf R. 1990; Complete nucleotide sequence of infectious coxsackievirus B3 cDNA: two initial 5′ uridine residues are regained during plus-strand RNA synthesis. Journal of Virology 64:1573–1583
    [Google Scholar]
  26. Knowles N. J., McCauley J. W. 1997; Coxsackievirus B5 and the relationship to swine vesicular disease virus. Current Topics in Microbiology and Immunology 223:153–167
    [Google Scholar]
  27. Knowles N. J., Sellers R. F. 1994; Swine vesicular disease. In Handbook of Zoonoses, Section B: Viral pp 437–444 Edited by Beran G. W. Boca Raton, FL: CRC Press;
    [Google Scholar]
  28. Kraus W., Zimmermann H., Zimmermann A., Eggers H. J., Nelsen-Salz B. 1995; Infectious cDNA clones of echovirus 12 and a variant resistant against the uncoating inhibitor rhodanine differ in seven amino acids. Journal of Virology 69:5853–5858
    [Google Scholar]
  29. Li W.-H., Takeda N., Miyamura K., Yamazaki S., Chen C.-W. 1985; A new method for estimating synonymous and nonsynonymous rates of nucleotide substitution considering the relative likelihood of nucleotide and codon changes. Molecular Biology and Evolution 2:150–174
    [Google Scholar]
  30. Li Q., Yafal A. G., Lee Y. M., Hogle J., Chow M. 1994; Poliovirus neutralization by antibodies to internal epitopes of VP4 and VP1 results from reversible exposure of these sequences at physiological temperature. Journal of Virology 68:3965–3970
    [Google Scholar]
  31. Liao S., Racaniello V. 1997; Allele-specific adaptation of poliovirus VP1 B-C loop variants to mutant cell receptors. Journal of Virology 71:9770–9777
    [Google Scholar]
  32. Lim K. H., Yin-Murphy M. 1971; An epidemic of conjunctivitis in Singapore in 1970. Singapore Medical Journal 12:247–249
    [Google Scholar]
  33. Lin K.-H., Takeda N., Miyamura K., Yamazaki S., Chen C.-W. 1991; The nucleotide sequence of 3C proteinase region of the coxsackievirus A24 variant: comparison of the isolates in Taiwan in 1985–1988. Virus Genes 5:121–131
    [Google Scholar]
  34. Matthews D. A., Smith W. W., Ferre R. A., Condon B., Budahazi G., Sisson W., Villafranca J. E., Janson C. A., McElroy H. E., Gribskov C. L., Worland S. 1994; Structure of human rhinovirus 3C protease reveals a trypsin-like polypeptide fold, RNA-binding site, and means for cleaving precursor polyprotein. Cell 77:761–771
    [Google Scholar]
  35. Mirkovic R. R., Kono R., Yin-Murphy M., Sohier R., Schmidt N. J., Melnick J. L. 1973; Enterovirus type 70: the etiologic agent of pandemic acute haemorrhagic conjunctivitis. Bulletin of the World Health Organization 49:341–346
    [Google Scholar]
  36. Mirkovic R. R., Schmidt N. J., Yin-Murphy M., Melnick J. L. 1974; Enterovirus etiology of the 1970 Singapore epidemic of acute conjunctivitis. Intervirology 4:119–127
    [Google Scholar]
  37. Mosimann S. C., Cherney M. M., Sia S., Plotch S., James M. N. 1997; Refined X-ray crystallographic structure of the poliovirus 3C gene product. Journal of Molecular Biology 273:1032–1047
    [Google Scholar]
  38. Mowat G. N., Darbyshire J. H., Huntley J. F. 1972; Differentiation of a vesicular disease of pigs in Hong Kong from foot-and-mouth disease. Veterinary Record 90:618–621
    [Google Scholar]
  39. Murray M. G., Bradley J., Yang X. F., Wimmer E., Moss E. G., Racaniello V. R. 1988; Poliovirus host range is determined by a short amino acid sequence in neutralization antigenic site I. Science 241:213–215
    [Google Scholar]
  40. Nardelli L., Lodetti G., Gualandi G., Goodridge D., Brown F., Cartwright B. 1968; A foot-and-mouth disease syndrome in pigs caused by an enterovirus. Nature 219:1275–1276
    [Google Scholar]
  41. Nei M., Gojobori T. 1986; Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Molecular Biology and Evolution 3:418–426
    [Google Scholar]
  42. Rambaut A., Grassly N. C. 1997; Seq-Gen: an application for the Monte Carlo simulation of DNA sequence evolution along phylogenetic trees. Computer Applications in the Biosciences 13:235–238
    [Google Scholar]
  43. Roivainen M., Piirainen L., Rysä T., Närvänen A., Hovi T. 1993; An immunodominant N-terminal region of VP1 protein of poliovirion that is buried in crystal structure can be exposed in solution. Virology 195:762–765
    [Google Scholar]
  44. Rossmann M. G., Arnold E., Erickson J. W., Frankenberger E. A., Griffith J. P., Hecht H.-J., Johnson J. E., Kamer G., Luo M., Mosser A. G., Rueckert R. R., Sherry B., Vriend G. 1985; Structure of a human common cold virus and functional relationship to other picornaviruses. Nature 317:145–153
    [Google Scholar]
  45. Ryan M. D., Jenkins O., Hughes P. J., Brown A., Knowles N. J., Booth D., Minor P. D., Almond J. W. 1990; The complete nucleotide sequence of enterovirus type 70: relationships with other members of the Picornaviridae. Journal of General Virology 71:2291–2299
    [Google Scholar]
  46. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution 4:406–425
    [Google Scholar]
  47. Seechurn P., Knowles N. J., McCauley J. W. 1990; The complete nucleotide sequence of a pathogenic swine vesicular disease virus. Virus Research 16:255–274
    [Google Scholar]
  48. Sherry B., Mosser A. G., Colonno R. J., Rueckert R. R. 1986; Use of monoclonal antibodies to identify four neutralization immunogens on a common cold picornavirus, human rhinovirus 14. Journal of Virology 57:246–257
    [Google Scholar]
  49. Swofford D. L. 1998 Computer Software: PaupStar Sunderland, MA: Sinauer;
    [Google Scholar]
  50. Takeda N., Tanimura M., Miyamura K. 1994; Molecular evolution of the major capsid protein VP1 of enterovirus 70. Journal of Virology 68:854–862
    [Google Scholar]
  51. Wiegers K., Uhlig H., Dernick R. 1989; N-AgIB of poliovirus type 1: a discontinuous epitope formed by two loops of VP1 comprising residues 96–104 and 141–152. Virology 170:583–586
    [Google Scholar]
  52. Zhang G., Wilsden G., Knowles N. J., McCauley J. W. 1993; Complete nucleotide sequence of a coxsackie B5 virus and its relationship to swine vesicular disease virus. Journal of General Virology 74:845–853
    [Google Scholar]
  53. Zimmermann H., Eggers H. J., Kraus W., Nelsen-Salz B. 1995; Complete nucleotide sequence and biological properties of an infectious clone of prototype echovirus 9. Virus Research 39:311–320
    [Google Scholar]
  54. Zimmermann H., Eggers H. J., Nelsen-Salz B. 1996; Molecular cloning and sequence determination of the complete genome of then virulent echovirus 9 strain Barty. Virus Genes 12:149–154
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-80-3-639
Loading
/content/journal/jgv/10.1099/0022-1317-80-3-639
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error