1887

Abstract

The key enzyme in coronavirus replicase polyprotein processing is the coronavirus main protease, 3CL. The substrate specificities of five coronavirus main proteases, including the prototypic enzymes from the coronavirus groups I, II and III, were characterized. Recombinant main proteases of human coronavirus (HCoV), transmissible gastroenteritis virus (TGEV), feline infectious peritonitis virus, avian infectious bronchitis virus and mouse hepatitis virus (MHV) were tested in peptide-based -cleavage assays. The determination of relative rate constants for a set of corresponding HCoV, TGEV and MHV 3CL cleavage sites revealed a conserved ranking of these sites. Furthermore, a synthetic peptide representing the N-terminal HCoV 3CL cleavage site was shown to be effectively hydrolysed by noncognate main proteases. The data show that the differential cleavage kinetics of sites within pp1a/pp1ab are a conserved feature of coronavirus main proteases and lead us to predict similar processing kinetics for the replicase polyproteins of all coronaviruses.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-83-3-595
2002-03-01
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/jgv/83/3/0830595a.html?itemId=/content/journal/jgv/10.1099/0022-1317-83-3-595&mimeType=html&fmt=ahah

References

  1. Almazán F., González J. M., Pénzes Z., Izeta A., Calvo E., Plana-Durán J., Enjuanes L. 2000; Engineering the largest RNA virus genome as an infectious bacterial artificial chromosome. Proceedings of the National Academy of Sciences, USA 97:5516–5521
    [Google Scholar]
  2. Baker S. C., Shieh C. K., Soe L. H., Chang M. F., Vannier D. M., Lai M. M. 1989; Identification of a domain required for autoproteolytic cleavage of murine coronavirus gene A polyprotein. Journal of Virology 63:3693–3699
    [Google Scholar]
  3. Bazan J. F., Fletterick R. J. 1988; Viral cysteine proteases are homologous to the trypsin-like family of serine proteases: structural and functional implications. Proceedings of the National Academy of Sciences, USA 85:7872–7876
    [Google Scholar]
  4. Bonilla P. J., Hughes S. A., Weiss S. R. 1997; Characterization of a second cleavage site and demonstration of activity in trans by the papain-like proteinase of the murine coronavirus mouse hepatitis virus strain A59. Journal of Virology 71:900–909
    [Google Scholar]
  5. Boursnell M. E. G., Brown T. D. K., Foulds I. J., Green P. F., Tomley F. M., Binns M. M. 1987; Completion of the sequence of the genome of the coronavirus avian infectious bronchitis virus. Journal of General Virology 68:57–77
    [Google Scholar]
  6. Brierley I., Boursnell M. E., Binns M. M., Bilimoria B., Blok V. C., Brown T. D., Inglis S. C. 1987; An efficient ribosomal frame-shifting signal in the polymerase-encoding region of the coronavirus IBV. EMBO Journal 6:3779–3785
    [Google Scholar]
  7. Casais R., Thiel V., Siddell S. G., Cavanagh D., Britton P. 2001; A reverse genetics system for the avian coronavirus infectious bronchitis virus. Journal of Virology 75:12359–12369
    [Google Scholar]
  8. Cavanagh D. 1997; Nidovirales : a new order comprising Coronaviridae and Arteriviridae . Archives of Virology 142:629–633
    [Google Scholar]
  9. den Boon J. A., Snijder E. J., Chirnside E. D., de Vries A. A., Horzinek M. C., Spaan W. J. 1991; Equine arteritis virus is not a togavirus but belongs to the coronaviruslike superfamily. Journal of Virology 65:2910–2920
    [Google Scholar]
  10. Denison M. R., Spaan W. J., van der Meer Y., Gibson C. A., Sims A. C., Prentice E., Lu X. T. 1999; The putative helicase of the coronavirus mouse hepatitis virus is processed from the replicase gene polyprotein and localizes in complexes that are active in viral RNA synthesis. Journal of Virology 73:6862–6871
    [Google Scholar]
  11. Eleouet J. F., Rasschaert D., Lambert P., Levy L., Vende P., Laude H. 1995; Complete sequence (20 kilobases) of the polyprotein-encoding gene 1 of transmissible gastroenteritis virus. Virology 206:817–822
    [Google Scholar]
  12. Gorbalenya A. E., Donchenko A. P., Blinov V. M., Koonin E. V. 1989a; Cysteine proteases of positive strand RNA viruses and chymotrypsin-like serine proteases. A distinct protein superfamily with a common structural fold. FEBS Letters 243:103–114
    [Google Scholar]
  13. Gorbalenya A. E., Koonin E. V., Donchenko A. P., Blinov V. M. 1989b; Coronavirus genome: prediction of putative functional domains in the non-structural polyprotein by comparative amino acid sequence analysis. Nucleic Acids Research 17:4847–4861
    [Google Scholar]
  14. Grötzinger C., Heusipp G., Ziebuhr J., Harms U., Süss J., Siddell S. G. 1996; Characterization of a 105-kDa polypeptide encoded in gene 1 of the human coronavirus HCV 229E. Virology 222:227–235
    [Google Scholar]
  15. Hegyi A., Friebe A., Gorbalenya A. E., Ziebuhr J. 2002; Mutational analysis of the active centre of coronavirus 3C-like proteases. Journal of General Virology 83:581–593
    [Google Scholar]
  16. Herold J., Raabe T., Schelle-Prinz B., Siddell S. G. 1993; Nucleotide sequence of the human coronavirus 229E RNA polymerase locus. Virology 195:680–691
    [Google Scholar]
  17. Herold J., Siddell S., Ziebuhr J. 1996; Characterization of coronavirus RNA polymerase gene products. Methods in Enzymology 275:68–89
    [Google Scholar]
  18. Herold J., Gorbalenya A. E., Thiel V., Schelle B., Siddell S. G. 1998; Proteolytic processing at the amino terminus of human coronavirus 229E gene 1-encoded polyproteins: identification of a papain-like proteinase and its substrate. Journal of Virology 72:910–918
    [Google Scholar]
  19. Heusipp G., Grötzinger C., Herold J., Siddell S. G., Ziebuhr J. 1997a; Identification and subcellular localization of a 41 kDa, polyprotein 1ab processing product in human coronavirus 229E-infected cells. Journal of General Virology 78:2789–2794
    [Google Scholar]
  20. Heusipp G., Harms U., Siddell S. G., Ziebuhr J. 1997b; Identification of an ATPase activity associated with a 71-kilodalton polypeptide encoded in gene 1 of the human coronavirus 229E. Journal of Virology 71:5631–5634
    [Google Scholar]
  21. Kanjanahaluethai A., Baker S. C. 2000; Identification of mouse hepatitis virus papain-like proteinase 2 activity. Journal of Virology 74:7911–7921
    [Google Scholar]
  22. Lee H. J., Shieh C. K., Gorbalenya A. E., Koonin E. V., La Monica N., Tuler J., Bagdzhadzhyan A., Lai M. M. 1991; The complete sequence (22 kilobases) of murine coronavirus gene 1 encoding the putative proteases and RNA polymerase. Virology 180:567–582
    [Google Scholar]
  23. Lim K. P., Ng L. F., Liu D. X. 2000; Identification of a novel cleavage activity of the first papain-like proteinase domain encoded by open reading frame 1a of the coronavirus Avian infectious bronchitis virus and characterization of the cleavage products. Journal of Virology 74:1674–1685
    [Google Scholar]
  24. Liu D. X., Brown T. D. 1995; Characterisation and mutational analysis of an ORF 1a-encoding proteinase domain responsible for proteolytic processing of the infectious bronchitis virus 1a/1b polyprotein. Virology 209:420–427
    [Google Scholar]
  25. Liu D. X., Brierley I., Tibbles K. W., Brown T. D. 1994; A 100-kilodalton polypeptide encoded by open reading frame (ORF) 1b of the coronavirus infectious bronchitis virus is processed by ORF 1a products. Journal of Virology 68:5772–5780
    [Google Scholar]
  26. Liu D. X., Xu H. Y., Brown T. D. 1997; Proteolytic processing of the coronavirus infectious bronchitis virus 1a polyprotein: identification of a 10-kilodalton polypeptide and determination of its cleavage sites. Journal of Virology 71:1814–1820
    [Google Scholar]
  27. Liu D. X., Shen S., Xu H. Y., Wang S. F. 1998; Proteolytic mapping of the coronavirus infectious bronchitis virus 1b polyprotein: evidence for the presence of four cleavage sites of the 3C-like proteinase and identification of two novel cleavage products. Virology 246:288–297
    [Google Scholar]
  28. Lu Y., Denison M. R. 1997; Determinants of mouse hepatitis virus 3C-like proteinase activity. Virology 230:335–342
    [Google Scholar]
  29. Lu Y., Lu X., Denison M. R. 1995; Identification and characterization of a serine-like proteinase of the murine coronavirus MHV-A59. Journal of Virology 69:3554–3559
    [Google Scholar]
  30. Lu X., Lu Y., Denison M. R. 1996; Intracellular and in vitro -translated 27-kDa proteins contain the 3C-like proteinase activity of the coronavirus MHV-A59. Virology 222:375–382
    [Google Scholar]
  31. Lu X. T., Sims A. C., Denison M. R. 1998; Mouse hepatitis virus 3C-like protease cleaves a 22-kilodalton protein from the open reading frame 1a polyprotein in virus-infected cells and in vitro . Journal of Virology 72:2265–2271
    [Google Scholar]
  32. Merrifield R. B. 1965; Automated synthesis of peptides. Science 150:178–185
    [Google Scholar]
  33. Ng L. F., Liu D. X. 2000; Further characterization of the coronavirus infectious bronchitis virus 3C-like proteinase and determination of a new cleavage site. Virology 272:27–39
    [Google Scholar]
  34. Pallai P. V., Burkhardt F., Skoog M., Schreiner K., Bax P., Cohen K. A., Hansen G., Palladino D. E., Harris K. S., Nicklin M. J., Wimmer E. 1989; Cleavage of synthetic peptides by purified poliovirus 3C proteinase. Journal of Biological Chemistry 264:9738–9741
    [Google Scholar]
  35. Sawicki S. G., Sawicki D. L. 1998; A new model for coronavirus transcription. Advances in Experimental Medicine and Biology 440:215–219
    [Google Scholar]
  36. Sawicki D. L., Wang T., Sawicki S. G. 2001; The RNA structures engaged in replication and transcription of the A59 strain of mouse hepatitis virus. Journal of General Virology 82:385–396
    [Google Scholar]
  37. Schechter I., Berger A. 1967; On the size of the active site in proteases. I. Papain. . Biochemical and Biophysical Research Communications 27:157–162
    [Google Scholar]
  38. Seybert A., Ziebuhr J., Siddell S. G. 1997; Expression and characterization of a recombinant murine coronavirus 3C-like proteinase. Journal of General Virology 78:71–75
    [Google Scholar]
  39. Spaan W., Delius H., Skinner M., Armstrong J., Rottier P., Smeekens S., van der Zeijst B. A., Siddell S. G. 1983; Coronavirus mRNA synthesis involves fusion of non-contiguous sequences. EMBO Journal 2:1839–1844
    [Google Scholar]
  40. Thiel V., Herold J., Schelle B., Siddell S. G. 2001a; Infectious RNA transcribed in vitro from a cDNA copy of the human coronavirus genome cloned in vaccinia virus. Journal of General Virology 82:1273–1281
    [Google Scholar]
  41. Thiel V., Herold J., Schelle B., Siddell S. G. 2001b; Viral replicase gene products suffice for coronavirus discontinuous transcription. Journal of Virology 75:6676–6681
    [Google Scholar]
  42. Tibbles K. W., Brierley I., Cavanagh D., Brown T. D. 1996; Characterization in vitro of an autocatalytic processing activity associated with the predicted 3C-like proteinase domain of the coronavirus avian infectious bronchitis virus. Journal of Virology 70:1923–1930
    [Google Scholar]
  43. van Marle G., Dobbe J. C., Gultyaev A. P., Luytjes W., Spaan W. J., Snijder E. J. 1999; Arterivirus discontinuous mRNA transcription is guided by base pairing between sense and antisense transcription-regulating sequences. Proceedings of the National Academy of Sciences, USA 96:12056–12061
    [Google Scholar]
  44. Ziebuhr J., Siddell S. G. 1999; Processing of the human coronavirus 229E replicase polyproteins by the virus-encoded 3C-like proteinase: identification of proteolytic products and cleavage sites common to pp1a and pp1ab. Journal of Virology 73:177–185
    [Google Scholar]
  45. Ziebuhr J., Herold J., Siddell S. G. 1995; Characterization of a human coronavirus (strain 229E) 3C-like proteinase activity. Journal of Virology 69:4331–4338
    [Google Scholar]
  46. Ziebuhr J., Heusipp G., Siddell S. G. 1997; Biosynthesis, purification, and characterization of the human coronavirus 229E 3C-like proteinase. Journal of Virology 71:3992–3997
    [Google Scholar]
  47. Ziebuhr J., Snijder E. J., Gorbalenya A. E. 2000; Virus-encoded proteinases and proteolytic processing in the Nidovirales . Journal of General Virology 81:853–879
    [Google Scholar]
  48. Ziebuhr J., Thiel V., Gorbalenya A. E. 2001; The autocatalytic release of a putative RNA virus transcription factor from its polyprotein precursor involves two paralogous papain-like proteases that cleave the same peptide bond. Journal of Biological Chemistry 276:33220–33232
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-83-3-595
Loading
/content/journal/jgv/10.1099/0022-1317-83-3-595
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error