1887

Abstract

A gene, encoding a protein homologous to an essential protein, FtsH, was identified adjacent to the gene and the operon in the Gram-positive bacterium The deduced amino acid sequence of the gene product showed full-length similarity to FtsH of , Yme1p of cerevisiae and a conserved region found in a new family of putative ATPases. In-frame fusions of and in , and immunodetection of the FtsH protein in cell fractions using anti-FtsH serum showed that was expressed and encodes a membrane protein. When contained on a high copy number plasmid, the gene complemented the lethality of a δ::mutation in at 37 °C and below, indicating that the gene can functionally replace the gene to some extent. The resulting strain showed temperature sensitivity and salt sensitivity. A mutant with an insertion into was salt-, heat- and cold-sensitive. These results suggest that FtsH is somehow involved in stress responses. Southern hybridization analysis indicated that genes homologous to of were also present in , and several and species, suggesting high conservation of in bacterial species.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-140-10-2601
1994-10-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/140/10/mic-140-10-2601.html?itemId=/content/journal/micro/10.1099/00221287-140-10-2601&mimeType=html&fmt=ahah

References

  1. Akiyama Y., Ogura T., Ito K. Involvement of FtsH in protein assembly into and through the membrane. I. Mutations that reduce retention efficiency of a cytoplasmic reporter. J Biol Chem 1994a; 269:5218–5224
    [Google Scholar]
  2. Akiyama Y., Shirai Y., Ito K. Involvement of FtsH in protein assembly into and through the membrane. II. Dominant mutations affecting FtsH function. J Biol Chem 1994b; 269:5225–5229
    [Google Scholar]
  3. Begg K.J., Tomoyasu T., Donachie W.D., Khattar M., Niki H., Yamanaka K., Hiraga S., Ogura T. Escherichia coli mutant Y16 is a double mutant carrying thermosensitive ftsH and ftsl mutations. J Bacteriol 1992; 174:2416–2417
    [Google Scholar]
  4. Birnboim H.C., Doly J. A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res 1979; 7:1513–1523
    [Google Scholar]
  5. Clark D.J., Maaloe O. DNA replication and the division cycle in Escherichia coli. J Mol Biol 1967; 23:99–112
    [Google Scholar]
  6. Devereux J., Haeberli P., Smithies O. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res 1984; 12:387–395
    [Google Scholar]
  7. Dubiel W., Ferrell K., Pratt G., Rechsteiner M. Subunit 4 of the 26S protease is a member of a novel eucaryotic ATPase family. J Biol Chem 1992; 267:22699–22702
    [Google Scholar]
  8. Eakle K.A., Bernstein M., Emr S.D. Characterization of a component of the yeast secretion machinery: identification of the SEC18 gene product. Mol Cell Biol 1988; 8:4098–4109
    [Google Scholar]
  9. Erdmann R., Wiebel F.F., Flessau A., Rytka J., Beyer A., Frohlich K., Kunau W. PAS1,a yeast gene required for peroxisome biogenesis, encodes a member of a novel family of putative ATPases. Cell 1991; 64:499–510
    [Google Scholar]
  10. Frohlich K., Fries H., Rudiger M., Erdmann R., Botstein D., Mecke D. Yeast cell cycle protein CDC48p shows full-length homology to the mammalian protein VCP and is a member of a protein family involved in secretion, peroxisome formation, and gene expression. J Cell Biol 1991; 114:443–453
    [Google Scholar]
  11. Gasson M.J. Plasmid complements of Streptococcus lactis NCDO 712 and other lactic streptococci after protoplast-induced curing. J Bacteriol 1983; 154:1–9
    [Google Scholar]
  12. Geisler U., Schumann W. Isolation of stress mutants of Bacillus subtilis by a novel genetic method. FEMS Microbiol Lett 1993; 108:251–254
    [Google Scholar]
  13. Gutierrez C., Barondess J., Manoil C., Beckwith J. The use of transposon TnphoA to detect genes for cell envelope proteins subject to a common regulatory stimulus. J Mol Biol 1987; 195:289–297
    [Google Scholar]
  14. Hanahan D. Studies on transformation of Escherichia coli with plasmids. J Mol Biol 1983; 166:557–580
    [Google Scholar]
  15. Henkin T.M., Donnelly C.E., Sonenshein A.L. Mutations in the spacer region of a Bacillus subtilis promoter. In Genetics and Biotechnology of Bacilli 1988 Edited by Ganesan A.T., Hoch J.A. San Diego: Academic Press; 2 pp 63–67
    [Google Scholar]
  16. Herman C., Ogura T., Tomoyasu T., Hiraga S., Akiyama Y., Ito K., Thomas R., D'Ari R., Bouloc P. Cell growth and X development controlled by the same essential Escherichia coli gene, ftsH/hflB. Proc Natl Acad Sci USA 1993; 90:10861–10865
    [Google Scholar]
  17. Holo H., Nes I.F. High-frequency transformation, by electroporation, of Lactococcus lactis subsp. cremoris grown with glycine in osmotically stabilized media. Appl Environ Microbiol 1989; 55:3119–3123
    [Google Scholar]
  18. Ipsen H., Larsen J.N. Detection of antigen-specific IgE antibodies in sera from allergic patients by SDS-PAGE immuno- blotting and crossed radio-immunoelectrophoresis. In Handbook of Immunoblotting of Proteins 1988 Edited by Bjerrum O., Heegaard N.H.H. Boca Raton: CRC Press; 2 pp 159–166
    [Google Scholar]
  19. Jochimsen B., Nygaard P., Vestergaard T. Location on the chromosome of Escherichia coli of genes governing purine metabolism. Mol & Gen 1975; Genet143:85–91
    [Google Scholar]
  20. Johansen E., Kibenich A. Characterization of Leuconostoc isolates from commercial mixed-strain mesophilic starter cultures. Dairy Sci 1992; 75:1186–1191
    [Google Scholar]
  21. Koivula T., Sibakov M., Palva I. Isolation and characterization ofLactococcus lactis subsp. lactis promoters. Appl Environ Microbiol 1991; 57:333–340
    [Google Scholar]
  22. Koller K.J., Brownstein M.J. Use of a cDNA clone to identify a supposed precursor protein containing valosin. Nature 1987; 325:542–545
    [Google Scholar]
  23. Kunau W.H., Beyer A., Franken T., Gotte K., Marzioch M., Saidowsky J., Skaletz-Rorowski A., Wiebel F.F. Two complementary approaches to study peroxisome biogenesis in Saccharomyces cerevisiae: forward and reversed genetics. Biochimie 1993; 75:209–224
    [Google Scholar]
  24. Kyte J., Doolittle R.F. A simple method for displaying the hydropathic character of a protein. J Mol Biol 1982; 157:105–132
    [Google Scholar]
  25. Larsen J.N., Stroman P., Ipsen H. PCR based cloning and sequencing of genes encoding the tree pollen major allergen Car b I from Carpinus betulus(hornbeam). Mol Immunol 1992; 29:703–711
    [Google Scholar]
  26. Ludwig W., Seewaldt E., Klipper-Balz R., Schleifer K.H., Magrum L., Woese C.R., Fox G.E., Stackebrandt E. The phylogenetic position of Streptococci and Lnterococcus. J Gen Microbiol 1985; 131:543–551
    [Google Scholar]
  27. Mandel M., Higa A. Calcium-dependent bacteriophage DNA infection. J Mol Biol 1970; 53:159–162
    [Google Scholar]
  28. Manoil C., Beckwith J. TnphoA: a transposon for protein export signals. Proc Natl Acad Sci USA 1985; 82:8129–8133
    [Google Scholar]
  29. Manoil C., Beckwith J. A genetic approach to analyzing membrane protein topology. Science 1986; 233:1403–1408
    [Google Scholar]
  30. Miller J.H. Experiments in Molecular Genetics 1972 Cold Spring Harbor NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  31. Moran C.P. Jr, Lang N., Le Grice F.S.J., Lee G., Stephens M., Sonenshein A.L., Pero J., Losick R. Nucleotide sequence that signals the initiation of transcription and translation in Bacillus subtilis. Mol & Gen Genet 1982; 186:339–346
    [Google Scholar]
  32. Nelbock P., Dillon P.J., Perkins A., Rosen C.A. A cDNA for a protein that interacts with the human immunodeficiency virus Tat transactivator. Science 1990; 248:1650–1653
    [Google Scholar]
  33. Nilsson D., Johansen E. A conserved sequence in tRNA and rRNA promoters of Lactococcus lactis. Biochim Biophys Acta 1994 (in press)
    [Google Scholar]
  34. Nilsson D., Lauridsen A.A. Isolation of purine auxotrophic mutants of Lactococcus lactis and characterization of the gene hpt encoding hypoxanthine guanine phosphoribosyl-transferase. Mol & Gen Genet 1992; 235:359–364
    [Google Scholar]
  35. Ogasawara N., Nakai S., Yoshikawa H. Systematic sequencing of the 180 kilobase region of the Bacillus subtilis chromosome containing the replication origin. DNA Res 1994; 1:1–14
    [Google Scholar]
  36. Ogura T., Tomoyasu T., Yuki T., Morimura S., Begg K.J., Donachie W.D., Mori H., Niki H., Hiraga S. Structure and function of the ftsH gene in Escherichia coli. Res Microbiol 1991; 142:279–282
    [Google Scholar]
  37. Peters J.-M., Walsh M.J., Franke W.W. An abundant and ubiquitous homo-oligomeric ring-shaped ATPase particle related to the putative fusion proteins Secl8p and NSF. EMBO J 1990; 9:1757–1767
    [Google Scholar]
  38. Sanger F., Nicklen S., Coulson A.R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 1977; 74:5463–5467
    [Google Scholar]
  39. Shibuya H., Irie K., Ninomiya-Tsuji J., Goebl M., Taniguchi T., Matsumoto K. New human gene encoding a positive modulator of HIV Tat-mediated transactivation. Nature 1992; 357:700–702
    [Google Scholar]
  40. Shine J., Dalgarno L. The 3'-terminal sequence of Escherichia coli 16S ribosomal RNA: complementarity to nonsense triplets and ribosome binding sites. Proc Natl Acad Sci USA 1974; 71:1342–1346
    [Google Scholar]
  41. Silhavy T.J., Berman M.L., Enquist L.W. Experiments with Gene Fusions 1984 Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  42. Swaffield J.C., Bromberg J.F., Johnston S.A. Alterations in a yeast protein resembling HIV Tat-binding protein relieve requirement for an acidic activation domain in GAL4. Nature 1992; 357:698–700
    [Google Scholar]
  43. Thorsness P.E., White K.H., Fox T.D. Inactivation of ' YME1, a member of the ftsH-SEC18-PAS1-cdc48 family of putative ATPase-encoding genes, causes increased escape of DNA from mitochondria in Saccharomyces cerevisiae. Mol Cell Biol 1993; 13:5418–5426
    [Google Scholar]
  44. Tomoyasu T., Yuki T., Morimura S., Mori H., Yamanaka K., Niki H., Hiraga S., Ogura T. The Escherichia coli FtsH protein is a prokaryotic member of a protein family of putative ATPases involved in membrane functions, cell cycle control, and gene expression. J Bacteriol 1993a; 175:1344–1351
    [Google Scholar]
  45. Tomoyasu T., Yamanaka K., Murata K., Suzaki T., Bouloc P., Kato A., Niki H., Hiraga S., Ogura T. Topology and subcellular localization of FtsH protein in Escherichia coli. J Bacteriol 1993b; 175:1352–1357
    [Google Scholar]
  46. Walker J.E., Saratse M., Runswick M.J., Gay N.J. Distantly related sequences in the α- and β-subunits of ATP synthetase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO J 1982; 1:945–951
    [Google Scholar]
  47. Wilson D.W., Wilcox C.A., Flynn G.C., Chen E., Kuang W., Henzel W.J., Block M.R., Ullrich A., Rothman J.E. A fusion protein required for vesicle-mediated transport in both mammalian cells and yeast. Nature 1989; 339:355–359
    [Google Scholar]
  48. Von Wright A., Tynkkynen S., Suominen M. Cloning of a Streptococcus lactisbsubsp. lactis chromosomal fragment associated with the ability to grow in milk. Appl Environ Microbiol 1987; 53:1584–1688
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-140-10-2601
Loading
/content/journal/micro/10.1099/00221287-140-10-2601
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error