1887

Abstract

The green fluorescent protein (GFP) of has been developed here as a reporter for gene expression and protein localization in When wild-type (wt) GFP was expressed in it was not possible to detect fluorescence or a translation product for the wt protein. Since this was probably due in part to the presence of the non-canonical CTG serine codon in the sequence, this codon was changed to the leucine codon TTG. cells expressing this construct contained GFP mRNA but were non-fluorescent and contained no detectable translation product. Hence a codon-optimized GFP gene was constructed in which all of the 239 amino acids are encoded by optimal codons for In this gene were also incorporated two previously identified mutations in the chromophore that increase GFP fluorescence. cells expressing this yeast-enhanced GFP gene (yEGFP3) are fluorescent and contain GFP protein. yEGFP3 can be used as a versatile reporter of gene expression in and and the optimized GFP described here should have broad applications in these and other fungal species.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-143-2-303
1997-02-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/143/2/mic-143-2-303.html?itemId=/content/journal/micro/10.1099/00221287-143-2-303&mimeType=html&fmt=ahah

References

  1. Bailey D.A., Feldmann P.J.F., Bovey M., Gow N.A.R., Brown A.J.P. 1996; The Candida albicans HYR1 gene, which is activated in response to hyphal development, belongs to a gene family encoding yeast cell wall proteins.. J Bacterial 178:5353–5360
    [Google Scholar]
  2. Beelman C.A., Parker R. 1995; Degradation of mRNA in eukaryotes.. Cell 81:179–183
    [Google Scholar]
  3. Bertram G., Swoboda R.K., Gow N.A.R., Gooday G.W., Brown A.J.P. 1996; Structure and regulation of the Candida albicans ADH1 gene encoding an immunogenic alcohol dehydrogenase.. Yeast 12:115–128
    [Google Scholar]
  4. Brown A.J.P. 1994; RNA extraction and mRNA quantitation in Candida albicans. . In Molecular Biology of Pathogenic Fungi: a Laboratory Manual pp. 127–134 Maresca B., Kobayashi G.S. Edited by New York:: Telos Press.;
    [Google Scholar]
  5. Brown A.J., Bertram G., Feldmann P.J., Peggie M.W., Swoboda R.K. 1991; Codon utilisation in the pathogenic yeast, Candida albicans.. Nucleic Acids Res 19:4298
    [Google Scholar]
  6. Brown D.H. Jr Slobodkin I.V., Kumamoto C.A. 1996; Stable transformation and regulated expression of an inducible reporter construct in Candida albicans using restriction enzyme-mediated integration.. Mol Gen Genet 251:75–80
    [Google Scholar]
  7. Cannon R.D., Jenkinson H.F., Shepherd M.G. 1992; Cloning and expression of Candida albicans ADE2 and proteinase genes on a replicative plasmid in C.albicans and in Saccharomyces cerevisiae.. Mol Gen Genet 235:453–457
    [Google Scholar]
  8. Chalfie M., Tu Y., Euskirchen G., Ward W.W., Prasher D. 1994; Green fluorescent protein as a marker for gene expression.. Science 263:802–805
    [Google Scholar]
  9. Cormack B.P., Valdivia R.H., Falkow S. 1996; FACS optimized mutants of the green fluorescent protein (GFP).. Gene 173:33–38
    [Google Scholar]
  10. Cubitt A.B., Heim R., Adams S.R., Boyd A.E., Gross L.A., Tsien R.Y. 1995; Understanding, improving and using green fluorescent proteins.. Trends Biochem Sci 20:448–455
    [Google Scholar]
  11. Cutler J.E. 1991; Putative virulence factors of Candida albicans.. Annu Rev Microbiol 45:187–218
    [Google Scholar]
  12. Feinberg A.P., Vogelstein B. 1983; A technique for radio-labeling DNA restriction endonuclease fragments to high specific activity.. Anal Biochem 132:6–13
    [Google Scholar]
  13. Fonzi W.A., Irwin M.Y. 1993; Isogenic strain construction and gene mapping in Candida albicans.. Genetics 134:717–728
    [Google Scholar]
  14. Geber A., Williamson P.R., Rex J.H., Sweeney E.C., Bennett J.E. 1992; Cloning and characterization of a Candida albicans maltase gene involved in sucrose utilization.. J Bacteriol 174:6992–6996
    [Google Scholar]
  15. Gietz D., St Jean A., Woods R.A., Schiestl R.H. 1992; Improved method for high efficiency transformation of intact yeast cells.. Nucleic Acids Res 20:1425
    [Google Scholar]
  16. Guthrie C., Fink G.R. 1991 Guide to Yeast Genetics and Molecular Biology. San Diego & London:: Academic Press.;
    [Google Scholar]
  17. Heim R., Prasher D.C., Tsien R.Y. 1994; Wavelength mutations and posttranslational autoxidation of green fluorescent protein.. Proc Natl Acad Sci USA 9112501–12504
    [Google Scholar]
  18. Hostetter M.K., Lorenz J.S., Preus L., Kendrick K.E. 1990; The iC3b receptor on Candida albicans: subcellular localization and modulation of receptor expression by glucose.. J Infect Dis 161:761–768
    [Google Scholar]
  19. Ito H., Fukuda Y., Murata K., Kimura A. 1983; Trans-formation of intact yeast cells treated with alkali cations.. J Bacteriol 153:163–168
    [Google Scholar]
  20. Kurtz M.B., Cortelyou M.W., Kirsch D.R. 1986; Integrative transformation of Candida albicans, using a cloned Candida ADE2 gene.. Mol Cell Biol 6:142–149
    [Google Scholar]
  21. Laemmli U.K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4.. Nature 227:680–685
    [Google Scholar]
  22. Leberer E., Harcus D., Broadbent I.D., Clark K.L., Dignard D., Ziegelbauer K., Schmit A., Gow N.A.R., Brown A.J.P., Thomas D.Y. 1996; Homologs of the Ste20p and Ste7p protein kinases are involved in hyphal formation of Candida albicans.. Proc Natl Acad Sci USA 9313217–13222
    [Google Scholar]
  23. Leuker C.E., Hahn A.M., Ernst J.F. 1992; β-Galactosidase of Kluyveromyces lactis (Lac4p) as reporter of gene expression in Candida albicans and C. tropicalis.. Mol Gen Genet 235:235–241
    [Google Scholar]
  24. Lindquist S. 1981; Regulation of protein synthesis during heat shock.. Nature 293:311–314
    [Google Scholar]
  25. Lloyd A.T., Sharp P.M. 1992; Evolution of codon usage patterns: the extent and nature of divergence between Candida albicans and Saccharomyces cerevisiae.. Nucleic Acids Res 20:5289–5295
    [Google Scholar]
  26. Moore P.A., Sagliocco F.A., Wood R.M., Brown A.J. 1991; Yeast glycolytic mRNAs are differentially regulated.. Mol Cell Biol 11:5330–5337
    [Google Scholar]
  27. Morise J.G., Shimomura O., Johnson F.H., Winant J. 1974; Intermolecular energy transfer in the bioluminescent system of Aequorea.. Biochemistry 13:2656–2662
    [Google Scholar]
  28. Myers K.K., Sypherd P.S., Fonzi W.A. 1995; Use of URA3 as a reporter of gene expression in C.albicans.. Curr Genet 27:243–248
    [Google Scholar]
  29. Odds F.C. 1988 Candida and Candidosis, 2nd edn.. London:: Bailliere Tindall.;
    [Google Scholar]
  30. Odds F.C. 1994; Candida species and virulence.. ASM News 60:313–318
    [Google Scholar]
  31. Ohama T., Suzuki T., Mori M., Osawa S., Ueda T., Watanabe K., Nakase T. 1993; Non-universal decoding of the leucine codon CUG in several Candida species.. Nucleic Acids Res 21:4039–4045
    [Google Scholar]
  32. Prasher D.C., Eckenrode V.K., Ward W.W., Prendergast F.G., Cormier M.J. 1992; Primary structure of the Aequorea victoria green-fluorescent protein.. Gene 111:229–233
    [Google Scholar]
  33. Ross J. 1995; mRNA stability in mammalian cells.. Microbiol Rev 59:423–450
    [Google Scholar]
  34. Sanger F., Nicklen S., Coulson A.R. 1977; DNA sequencing with chain-terminating inhibitors.. Proc Natl Acad Sci USA 745463–5467
    [Google Scholar]
  35. Santos M.A., Tuite M.F. 1995; The CUG codon is decoded in vivo as serine and not leucine in Candida albicans.. Nucleic Acids Res 23:1481–1486
    [Google Scholar]
  36. Santos M.A., el-Adlouni C., Cox A.D., Luz J.M., Keith G., Tuite M.F. 1994; Transfer RNA profiling: a new method for the identification of pathogenic Candida species.. Yeast 10:625–636
    [Google Scholar]
  37. Scherer S., Magee P.T. 1990; Genetics of Candida albicans.. Microbiol Rev 54:226–241
    [Google Scholar]
  38. Sidorova J.M., Mikesell G.E., Breeden L.L. 1995; Cell cycle-regulated phosphorylation of Swi6 controls its nuclear localization.. Mol Biol Cell 6:1641–1658
    [Google Scholar]
  39. Srikantha T., Klapach A., Lorenz W.W., Tsai L.K., Laughlin L.A., Gorman J.A., Soil D.R. 1996; The sea pansy Renilla reniformis luciferase serves as a sensitive bioluminescent reporter for differential gene expression in Candida albicans.. J Bacteriol 178:121–129
    [Google Scholar]
  40. Thomas B.J., Rothstein R. 1989; Elevated recombination rates in transcriptionally active DNA.. Cell 56:619–630
    [Google Scholar]
  41. Wang S., Hazelrigg T. 1994; Implications for bcd mRNA localization from spatial distribution of exu protein in Drosophila oogenesis.. Nature 369:400–403
    [Google Scholar]
  42. Ward W.W., Cody C.W., Hart R.C., Cormier M.J. 1980; Spectrophotometric identity of the energy-transfer chromophores in Renilla and Aequorea green fluorescent proteins.. Photochem Photobiol 31:611–615
    [Google Scholar]
  43. White T.C., Andrews L.E., Maltby D., Agabian N. 1995; The ̒universal̓ leucine codon CTG in the secreted aspartyl proteinase 1 (SAP1) gene of Candida albicans encodes a serine in vivo.. J Bacteriol 177:2953–2955
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-143-2-303
Loading
/content/journal/micro/10.1099/00221287-143-2-303
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error