1887

Abstract

contains a stationary-phase aconitase (AcnA) that is induced by iron and oxidative stress, and a major but less stable aconitase (AcnB) synthesized during exponential growth. These enzymes were shown to resemble the bifunctional iron-regulatory proteins (IRP1)/cytoplasmic aconitases of vertebrates in having alternative mRNA-binding and catalytic activities. Affinity chromatography and gel retardation analysis showed that the AcnA and AcnB apo-proteins each interact with the 3′ untranslated regions (3′UTRs) of and mRNA at physiologically significant protein concentrations. AcnA and AcnB synthesis was enhanced by the apo-aconitases and this enhancement was abolished by 3′UTR deletion from the DNA templates, presumably by loss of mRNA stabilization by bound apo-aconitase. studies showed that although total aconitase activity is lowered during oxidative stress, synthesis of the AcnA and AcnB proteins and the stabilities of and mRNAs both increase, suggesting that inactive aconitase mediates a post-transcriptional positive autoregulatory switch. Evidence for an iron–sulphur-cluster-dependent switch was inferred from the more than threefold higher mRNA-binding affinities of the apo-aconitases relative to the holo-enzymes. Thus by modulating translation via site-specific interactions between apo-enzyme and relevant transcripts, the aconitases provide a new and rapidly reacting component of the bacterial oxidative stress response.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-145-11-3069
1999-11-01
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/145/11/1453069a.html?itemId=/content/journal/micro/10.1099/00221287-145-11-3069&mimeType=html&fmt=ahah

References

  1. Aiba H., Adhya S., Decrombrugghe B. 1981; Evidence for two functional gal promoters in intact Escherichia coli cells. J Biol Chem 256:1905–1910
    [Google Scholar]
  2. Arraiano C. M., Cruz A. A., Kushner S. R. 1997; Analysis of the in vivo decay of the Escherichia coli dicistronic pyrF–orfF transcript: evidence for multiple degradation pathways. J Mol Biol 268:261–272 [CrossRef]
    [Google Scholar]
  3. Basilion J. P., Rouault T. A., Massinople C. M., Klausner R. D., Burgess W. H. 1994; The iron-responsive element-binding protein: localization of the RNA-binding site to the aconitase active-site cleft. Proc Natl Acad Sci USA 91:574–578 [CrossRef]
    [Google Scholar]
  4. Beinert H., Kennedy M. C., Stout C. D. 1996; Aconitase as iron–sulfur protein, enzyme and iron-regulatory protein. Chem Rev 96:2335–2373 [CrossRef]
    [Google Scholar]
  5. Bradbury A. J., Gruer M. J., Rudd K. E., Guest J. R. 1996; The second aconitase (AcnB) of Escherichia coli. Microbiology 142:389–400 [CrossRef]
    [Google Scholar]
  6. Butt J., Kim H.-Y., Basilion J. P., Cohen S., Iwai K., Philpott C. C., Altschul S., Klausner R. D., Rouault T. A. 1996; Differences in the RNA binding sites of iron regulatory proteins and potential target diversity. Proc Natl Acad Sci USA 93:4345–4349 [CrossRef]
    [Google Scholar]
  7. Constable A., Quick S., Gray N. K., Hentze M. W. 1992; Modulation of the RNA-binding activity of a regulatory protein by iron in vitro: switching between enzymatic and genetic function?. Proc Natl Acad Sci USA 89:4554–4558 [CrossRef]
    [Google Scholar]
  8. Cunningham L., Gruer M. J., Guest J. R. 1997; Transcriptional regulation of the aconitase genes (acnA and acnB) of Escherichia coli. Microbiology 143:3795–3805 [CrossRef]
    [Google Scholar]
  9. Dandekar T., Beyer K., Bork P.7 other authors 1998; Systematic genomic screening and analysis of mRNA in untranslated regions and mRNA precursors: combining experimental and computational approaches. Bioinformatics 14:271–278 [CrossRef]
    [Google Scholar]
  10. Ding H., Demple B. 1997; In vivo kinetics of a redox-regulated transcriptional switch. Proc Natl Acad Sci USA 94:8445–8449 [CrossRef]
    [Google Scholar]
  11. Dingman D. W., Rosencrantz M. S., Sonenshein A. L. 1987; Relationship between aconitase gene expression and sporulation in Bacillus subtilis. J Bacteriol 169:3068–3075
    [Google Scholar]
  12. Gardner P. R., Fridovich I. 1992; Inactivation–reactivation of aconitase in Escherichia coli: a sensitive measure of superoxide radical. J Biol Chem 267:8757–8763
    [Google Scholar]
  13. Gardner P. R., Costantino G., Szabo C., Salzman A. L. 1997; Nitric oxide sensitivity of the aconitases. J Biol Chem 272:25071–25076 [CrossRef]
    [Google Scholar]
  14. Gray N. K., Quick S., Goossen B., Constable A., Hirling H., Kuhn L. C., Hentze M. W. 1993; Recombinant iron-regulatory factor functions as an iron-responsive-element-binding protein, a translational repressor and an aconitase: a functional assay for translational repression and direct demonstration of the iron switch. Eur J Biochem 218:657–667 [CrossRef]
    [Google Scholar]
  15. Greenberg J. T., Monach P., Chou J. H., Josephy D., Demple B. 1990; Positive control of a global antioxidant defense regulon activated by superoxide generating agents in Escherichia coli. Proc Natl Acad Sci USA 87:6181–6185 [CrossRef]
    [Google Scholar]
  16. Gruer M. J., Guest J. R. 1994; Two genetically-distinct and differentially-regulated aconitases (AcnA and AcnB) in Escherichia coli. Microbiology 140:2531–2541 [CrossRef]
    [Google Scholar]
  17. Gruer M. J., Artymiuk P. J., Guest J. R. 1997a; The aconitase family: three structural variations on a common theme. Trends Biochem Sci 22:3–6 [CrossRef]
    [Google Scholar]
  18. Gruer M. J., Bradbury A. J., Guest J. R. 1997b; Construction and properties of aconitase mutants of Escherichia coli. Microbiology 143:1837–1846 [CrossRef]
    [Google Scholar]
  19. Hentze M. W., Kuhn L. C. 1996; Molecular control of vertebrate iron metabolism: mRNA-based regulatory circuits operated by iron, nitric oxide, and oxidative stress. Proc Natl Acad Sci USA 93:8175–8182 [CrossRef]
    [Google Scholar]
  20. Hidalgo E., Demple B. 1996; Adaptive resposes to oxidative stress: the soxRS and oxyR regulons. In Regulation of Gene Expression in Escherichia coli pp. 435–452Edited by Lin E. C. C., Lynch S. A. Georgetown, TX: R. G. Landes Co;
    [Google Scholar]
  21. Hirling H., Henderson B. R., Kuhn L. C. 1994; Mutational analysis of the [4Fe–4S] cluster converting iron regulatory factor from its RNA-binding form to cytoplasmic aconitase. EMBO J 13:453–461
    [Google Scholar]
  22. Kennedy M. C., Beinert H. 1988; The state of cluster SH and S2- of aconitase during cluster interconversions and removal. J Biol Chem 263:8194–8198
    [Google Scholar]
  23. Kennedy M. C., Emptage M. H., Dreyer J.-L., Bienert H. 1983; The role of iron in the activation–inactivation of aconitase. J Biol Chem 258:11098–11105
    [Google Scholar]
  24. Kim H.-Y., Lavaute T., Iwai K., Klausner R. D., Rouault T. A. 1996; Identification of a conserved and functional iron-responsive element in the 5′-untranslated region of mammalian mitochondrial aconitase. J Biol Chem 271:24226–24230 [CrossRef]
    [Google Scholar]
  25. Klausner R. D., Rouault T. A. 1993; A double life: cytosolic aconitase as a regulatory RNA binding protein. Mol Biol Cell 4:1–5 [CrossRef]
    [Google Scholar]
  26. Kushner S. R. 1996; mRNA decay. In Esherichia coli and Salmonella: Cellular and Molecular Biology pp. 849–860Edited by Neidhardt F. C. others Washington, DC: American Society for Microbiology;
    [Google Scholar]
  27. Mengaud J. M., Horwitz M. A. 1993; The major iron-containing protein of Legionella pneumophila is an aconitase homologous with the human iron-responsive element-binding protein. J Bacteriol 175:5666–5676
    [Google Scholar]
  28. Pantopoulos K., Hentze M. W. 1995a; Nitric oxide signaling to iron-regulatory protein: direct control of ferritin mRNA translation and transferrin receptor mRNA stability in transfected fibroblasts. Proc Natl Acad Sci USA 92:1267–1271 [CrossRef]
    [Google Scholar]
  29. Pantopoulos K., Hentze M. W. 1995b; Rapid responses to oxidative stress mediated by iron regulatory protein. EMBO J 14:2917–2924
    [Google Scholar]
  30. Prodromou C., Haynes M. J., Guest J. R. 1991; The aconitase of Escherichia coli: purification of the enzyme and molecular cloning and map location of the gene (acn). J Gen Microbiol 137:2505–2515 [CrossRef]
    [Google Scholar]
  31. Prodromou C., Artymiuk P. J., Guest J. R. 1992; The aconitase of Escherichia coli. Eur J Biochem 204:599–609 [CrossRef]
    [Google Scholar]
  32. Robbins A. H., Stout C. D. 1989; The structure of aconitase. Proteins 5:289–312 [CrossRef]
    [Google Scholar]
  33. Rouault T. A., Klausner R. D. 1996; Iron–sulfur clusters as biosensors of oxidants and iron. Trend Biochem Sci 21:174–177 [CrossRef]
    [Google Scholar]
  34. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual Cold Spring Harbor NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  35. Silhavy T. J., Barman M. L., Enquist L. W. 1984 Experiments with Gene Fusions Cold Spring Harbor NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  36. Wilson T. J. G., Bertrand N., Tang J.-L., Feng J.-X., Pan M.-Q., Barber C. E., Dow J. M., Daniels M. J. 1998; The rpfA gene of Xanthomonas campestris pathovar campestris, which is involved in the regulation of pathogenicity factor production, encodes an aconitase. Mol Microbiol 28:961–970 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-145-11-3069
Loading
/content/journal/micro/10.1099/00221287-145-11-3069
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error