1887

Abstract

Chlamydiae contain two porins, MOMP and PorB, that facilitate diffusion of solutes through the outer membrane. MOMP is a general porin that permits the diffusion of a wide variety of compounds including carbohydrates and amino acids. The relative inefficiency of PorB as a general porin and its low abundance in the outer membrane suggest that it may function as a substrate-specific porin. The tricarboxylic acid (TCA) cycle of chlamydiae is incomplete and to function would require the exogenous acquisition of 2-oxoglutarate or glutamate. A liposome-swelling assay for anions as well as an enzyme-linked liposome assay were used to demonstrate the efficient diffusion of dicarboxylates such as 2-oxoglutarate through PorB. These data demonstrate that PorB is a dicarboxylate-specific porin that may feed the chlamydial TCA cycle and provide chlamydiae with carbon and energy production intermediates.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-147-11-3135
2001-11-01
2024-04-23
Loading full text...

Full text loading...

/deliver/fulltext/micro/147/11/1473135a.html?itemId=/content/journal/micro/10.1099/00221287-147-11-3135&mimeType=html&fmt=ahah

References

  1. Bavoil, P., Ohlin, A. & Schachter, J. (1984). Role of disulfide bonding in outer membrane structure and permeability in Chlamydia trachomatis. Infect Immun 44, 479-485. [Google Scholar]
  2. Harper, A., Pogson, C. I., Jones, M. L. & Pearce, J. H. (2000). Chlamydial development is adversely affected by minor changes in amino acid supply, blood plasma amino acid levels, and glucose deprivation. Infect Immun 68, 1457-1464.[CrossRef] [Google Scholar]
  3. Heinzen, R. A. & Hackstadt, T. (1997). The Chlamydia trachomatis parasitophorous vacuolar membrane is not passively permeable to low-molecular-weight compounds. Infect Immun 65, 1088-1094. [Google Scholar]
  4. Iliffe-Lee, E. R. & McClarty, G. (2000). Regulation of carbon metabolism in Chlamydia trachomatis. Mol Microbiol 38, 20-30.[CrossRef] [Google Scholar]
  5. Jones, H. M., Kubo, A. & Stephens, R. S. (2000). Design, expression and functional characterization of a synthetic gene encoding the Chlamydia trachomatis major outer membrane protein. Gene 258, 173-181.[CrossRef] [Google Scholar]
  6. Kalman, S., Mitchell, W., Marathe, R. & 7 other authors (1999). Comparative genomes of Chlamydia pneumoniae and C. trachomatis. Nat Genet 21, 385–389.[CrossRef] [Google Scholar]
  7. Koebnik, R., Locher, K. P. & Van Gelder, P. (2000). Structure and function of bacterial outer membrane proteins: barrels in a nutshell. Mol Microbiol 37, 239-253.[CrossRef] [Google Scholar]
  8. Kubo, A. & Stephens, R. S. (2000). Characterization and functional analysis of PorB, a Chlamydia porin and neutralizing target. Mol Microbiol 38, 772-780.[CrossRef] [Google Scholar]
  9. Luckey, M. & Nikaido, H. (1980). Specificity of diffusion channels produced by lambda phage receptor protein of Escherichia coli. Proc Natl Acad Sci USA 77, 167-171.[CrossRef] [Google Scholar]
  10. McClarty (1999). Chlamydial metabolism as inferred from the complete genome sequence. In Chlamydia: Intracellular Biology, Pathogenesis, and Immunity , pp. 69-100. Edited by R. S. Stephens. Washington, DC:American Society for Microbiology.
  11. Moulder, J. W. (1991). Interaction of chlamydiae and host cells in vitro. Microbiol Rev 55, 143-190. [Google Scholar]
  12. Nikaido, H. & Rosenberg, E. Y. (1983). Porin channels in Escherichia coli: studies with liposomes reconstituted from purified proteins. J Bacteriol 153, 241-252. [Google Scholar]
  13. Osborn, M. J. & Munson, R. (1974). Separation of the inner (cytoplasmic) and outer membranes of gram-negative bacteria. Methods Enzymol 31, 642-653. [Google Scholar]
  14. Reumann, S., Maier, E., Heldt, H. W. & Benz, R. (1998). Permeability properties of the porin of spinach leaf peroxisomes. Eur J Biochem 251, 359-366.[CrossRef] [Google Scholar]
  15. Stephens, R. S., Kalman, S., Lammel, C. & 9 other authors (1998). Genome sequence of an obligate intracellular pathogen of humans: Chlamydia trachomatis. Science 282, 754–759.[CrossRef] [Google Scholar]
  16. Weber, A., Menzlaff, E., Arbinger, B., Gutensohn, M., Eckerskorn, C. & Flügge, U. I. (1995). The 2-oxoglutarate/malate translocator of chloroplast envelope membranes: molecular cloning of a transporter containing a 12-helix motif and expression of the functional protein in yeast cells. Biochemistry 34, 2621-2627.[CrossRef] [Google Scholar]
  17. Wyllie, S., Ashley, R. H., Longbottom, D. & Herring, A. J. (1998). The major outer membrane protein of Chlamydia psittaci functions as a porin-like ion channel. Infect Immun 66, 5202-5207. [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-147-11-3135
Loading
/content/journal/micro/10.1099/00221287-147-11-3135
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error