1887

Abstract

Glycopeptidolipids (GPLs) are a class of species- or type-specific mycobacterial lipids and major constituents of the cell envelopes of many non-tuberculous mycobacteria. To determine the function of GPLs in the physiology of these bacteria, a mutant of in which the gene encoding a mycobacterial nonribosomal peptide synthetase has been inactivated by transposon mutagenesis was analysed. Labelling experiments indicated that half of the bacterial GPLs were located on the cell surface and represented 85% of the surface-exposed lipids of the parent strain whereas the mutant was defective in the production of the GPLs. Compared to the parent smooth morphotype strain, the GPL-deficient mutant strain exhibited a rough colony morphology, an increase of the cell hydrophobicity and formed huge aggregates. As a consequence, the mutant cells were no longer able to bind ruthenium red, as observed by transmission electron microscopy. The altered surface properties of the mutant cells also affected the phagocytosis of individual bacilli by human monocyte-derived macrophages since mutant cells were internalized more rapidly than cells from the parent strain. Nevertheless, no specific release of surface constituents into the culture broth of the mutant was observed, indicating that the cell surface is composed of substances other than GPLs and that these are essential for maintaining the architecture of the outermost layer of the cell envelope. Importantly, the absence of these major extractable lipids of from the mutant strain has a profound effect on the uptake of the hydrophobic chenodeoxycholate by cells, indicating that GPLs are involved in the cell wall permeability barrier of . Altogether, these data showed that, in addition to being distinctive markers of numerous mycobacterial species, GPLs play a role in the bacterial phenotype, surface properties and cell wall permeability.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-148-10-3089
2002-10-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/148/10/1483089a.html?itemId=/content/journal/micro/10.1099/00221287-148-10-3089&mimeType=html&fmt=ahah

References

  1. Astarie-Dequeker C, N’Diaye E. N, Le Cabec V, Rittig M. G, Prandi J., Maridonneau-Parini I. 1999; The mannose receptor mediates uptake of pathogenic and nonpathogenic mycobacteria and bypasses bactericidal responses in human macrophages. Infect Immun 67:469–477
    [Google Scholar]
  2. Bardou F, Raynaud C, Ramos C, Lanéelle M.-A., Lanéelle G. 1998; Isoniazid uptake mechanism in Mycobacterium tuberculosis . Microbiology 144:2539–2544
    [Google Scholar]
  3. Barksdale L., Kim K. S. 1977; Mycobacterium . Bacteriol Rev 41:217–372
    [Google Scholar]
  4. Barrow W. W., Brennan P. J. 1982; Isolation in high frequency of rough variants of Mycobacterium intracellulare lacking C-mycoside glycopeptidolipid antigens. J Bacteriol 150:381–384
    [Google Scholar]
  5. Bayer M. E., Sloyer J. L. 1990; The electrophoretic mobility of Gram-negative and Gram-positive bacteria: an electrokinetic analysis. J Gen Microbiol 136:867–874
    [Google Scholar]
  6. Belisle J. T, Pascopella L, Inamine J. M, Brennan P. J., Jacobs W. R. 1991; Isolation and expression of a gene cluster responsible for biosynthesis of the glycopeptidolipid antigens of Mycobacterium avium . J Bacteriol 173:6991–6997
    [Google Scholar]
  7. Bendinger B, Rijnaarts H. H. M, Altendorf K., Zehnder A. J. B. 1993; Physicochemical cell surface and adhesive properties of coryneform bacteria related to the presence and chain length of mycolic acids. Appl Environ Microbiol 59:3973–3977
    [Google Scholar]
  8. Benedetti E. L, Dunia I, Ludosky M. A, Nguyen V. M, Dang D. T, Rastogi N., David H. L. 1984; Freeze-etching and freeze-fracture structural features of cell envelopes in mycobacteria and leprosy derived corynebacteria. Acta Leprol 2:237–248
    [Google Scholar]
  9. Besra G. S, McNeil M. R, Rivoire B, Khoo K. H, Morris H. R, Dell A., Brennan P. J. 1993; Further structural definition of a new family of glycopeptidolipids from Mycobacterium xenopi . Biochemistry 32:347–355
    [Google Scholar]
  10. Billman-Jacobe H, McConville M. J, Haites R. E, Kovacevic S., Coppel R. L. 1999; Identification of a peptide synthetase involved in the biosynthesis of glycopeptidolipids of Mycobacterium smegmatis . Mol Microbiol 33:1244–1253
    [Google Scholar]
  11. Borrego S, Niubó E, Ancheta O., Espinosa M. E. 2000; Study of the microbial aggregation in Mycobacterium using image analysis and electron microscopy. Tissue Cell 32:494–500
    [Google Scholar]
  12. Brennan P. J. 1988; Mycobacterium and other actinomycetes. In Microbial Lipids pp 203–298 Edited by Ratledge C., Wilkinson S. G. London: Academic Press;
    [Google Scholar]
  13. Brennan P. J., Nikaido H. 1995; The envelope of mycobacteria. Annu Rev Biochem 64:29–63
    [Google Scholar]
  14. Camacho L. R, Constant P, Raynaud C, Lanéelle M.-A, Triccas J. A, Gicquel B, Daffé M., Guilhot C. 2001; Analysis of the phthiocerol dimycocerosate locus of Mycobacterium tuberculosis : evidence that this lipid is involved in the cell wall permeability barrier. J Biol Chem 276:19845–19854
    [Google Scholar]
  15. Cangelosi G. A, Palermo C. O, Laurent J.-P, Hamlin A. M., Brabant W. H. 1999; Colony morphotypes on Congo red agar segregate along species and drug susceptibility lines in the Mycobacterium avium–intracellulare complex. Microbiology 145:1317–1324
    [Google Scholar]
  16. Cougoule C, Constant P, Etienne G, Daffé M., Maridonneau-Parini I. 2002; Lack of fusion of azurophil granules with phagosomes during phagocytosis of Mycobacterium smegmatis by human neutrophils is not actively controlled by the bacteria. Infect Immun 70:1591–1598
    [Google Scholar]
  17. Daffé M., Draper P. 1998; The envelope layers of mycobacteria with reference to their pathogenicity. Adv Microbiol Physiol 39:131–201
    [Google Scholar]
  18. Daffé M., Lemassu A. 2000; Glycobiology of the mycobacterial surface: structure and biological activities of the cell envelope glycoconjugates. In Glycomicrobiology pp 225–273 Edited by Doyle R. J. New York: Kluwer/Plenum;
    [Google Scholar]
  19. Daffé M, Lanéelle M.-A., Puzo G. 1983; Structural elucidation by field desorption and electron-impact mass spectrometry of the C-mycosides isolated from Mycobacterium smegmatis . Biochim Biophys Acta 751:439–443
    [Google Scholar]
  20. Dische Z. 1962; Color reaction of hexoses. Methods Carbohydr Chem 1:488–494
    [Google Scholar]
  21. Dittmer J. C. F., Lester R. L. 1964; A simple specific spray for the detection of phospholipids on thin layer chromatograms. J Lipid Res 5:126–127
    [Google Scholar]
  22. Draper P. 1974; The mycoside capsule of Mycobacterium avium 357. J Gen Microbiol 83:431–433
    [Google Scholar]
  23. Draper P. 1982; The anatomy of mycobacteria. In The Biology of The Mycobacteria vol. 1Physiology, Identification and Classification pp 9–49 Edited by Ratledge C., Stanford J. L. London: Academic Press;
    [Google Scholar]
  24. Draper P. 1998; The outer parts of the mycobacterial envelope as permeability barrier. Frontiers Biosci 3:1253–1261
    [Google Scholar]
  25. Dubnau E, Chan J, Raynaud C, Mohan V. P, Lanéelle M.-A, Yu K, Quemard A, Smith I., Daffé M. 2000; Oxygenated mycolic acids are necessary for virulence of Mycobacterium tuberculosis in mice . Mol Microbiol 36:630–637
    [Google Scholar]
  26. Ehlers M. R., Daffé M. 1998; Interactions between Mycobacterium tuberculosis and host cells: are mycobacterial sugars the key?. Trends Microbiol 6:328–335
    [Google Scholar]
  27. Furuchi A., Tokunaga T. 1972; Nature of the receptor substance of Mycobacterium smegmatis for D4 bacteriophage adsorption. J Bacteriol 111:404–411
    [Google Scholar]
  28. George K. M, Yuan Y, Sherman D. R., Barry C. E. 1995; The biosynthesis of cyclopropanated mycolic acids in Mycobacterium tuberculosis : identification and functional analysis of cma-2 . J Biol Chem 270:27292–27298
    [Google Scholar]
  29. Goren M. B., Brennan P. J. 1979; Mycobacterial lipids: chemistry and biological activities. In Tuberculosis pp 63–193 Edited by Youmans G. P. Philadelphia, PA: WB Saunders;
    [Google Scholar]
  30. Goren M. B, McClatchy J. K, Martens B., Brokl O. 1972; Mycosides C: behavior as receptor site substance for mycobacteriophage D4. J Virol 9:999–1003
    [Google Scholar]
  31. Jackson M, Raynaud C, Lanéelle M.-A, Guilhot C, Laurent-Winter C, Ensergueix D, Gicquel B., Daffé M. 1999; Inactivation of the antigen 85C gene profoundly affects the mycolate content and alters the permeability of the Mycobacterium tuberculosis cell envelope. Mol Microbiol 31:1573–1587
    [Google Scholar]
  32. Lemassu A, Ortalo-Magné A, Bardou F, Silve G, Lanéelle M.-A., Daffé M. 1996; Extracellular and surface-exposed polysaccharides of non-tuberculous mycobacteria. Microbiology 142:1513–1520
    [Google Scholar]
  33. Liu J, Rosenberg E. Y., Nikaido H. 1995; Fluidity of the lipid domain of cell wall from Mycobacterium chelonae . Proc Natl Acad Sci USA 92:11254–11258
    [Google Scholar]
  34. Liu J, Barry C. E, Besra G. S., Nikaido H. 1996; Mycolic acid structure determines the fluidity of the mycobacterial cell wall. J Biol Chem 271:29545–29551
    [Google Scholar]
  35. Martinez A, Torello S., Kolter R. 1999; Sliding motility in mycobacteria. J Bacteriol 181:7331–7338
    [Google Scholar]
  36. Minnikin D. E. 1982; Lipids: complex lipids, their chemistry, biosynthesis and roles. In The Biology of the Mycobacteria vol 1Physiology, Identification and Classification pp 95–184 Edited by Ratledge C., Stanford J. L. London: Academic Press;
    [Google Scholar]
  37. Moormann M, Zähringer U, Moll H, Kaufmann R, Schmid R., Altendorf K. 1997; A new glycosylated lipopeptide incorporated into the cell wall of a smooth variant of Gordona hydrophobica . J Biol Chem 272:10729–10738
    [Google Scholar]
  38. Mukhopadhyay S, Basu D., Chakrabarti P. 1997; Characterization of a porin from Mycobacterium smegmatis . J Bacteriol 179:6205–6207
    [Google Scholar]
  39. N’Diaye E. N, Darzacq X, Astarie-Dequeker C, Daffé M, Calafat J., Maridonneau-Parini I. 1998; Fusion of azurophil granules with phagosomes and activation of the tyrosine kinase Hck are specifically inhibited during phagocytosis of mycobacteria by human neutrophils. J Immunol 161:4983–4991
    [Google Scholar]
  40. Ortalo-Magné A, Dupont M.-A, Lemassu A, Andersen A. B, Gounon P., Daffé M. 1995; Molecular composition of the outermost capsular material of the tubercle bacillus. Microbiology 141:1609–1620
    [Google Scholar]
  41. Ortalo-Magné A, Lemassu A, Lanéelle M.-A, Bardou F, Silve G, Gounon P, Marchal G., Daffé M. 1996; Identification of the surface-exposed lipids on the cell envelope of Mycobacterium tuberculosis and other mycobacterial species. J Bacteriol 178:456–461
    [Google Scholar]
  42. Paul T. R., Beveridge T. J. 1992; Reevaluation of envelope profiles and cytoplasmic ultrastructure of mycobacteria processed by conventional embedding and freeze-substitution protocols. J Bacteriol 174:6508–6517
    [Google Scholar]
  43. Peyron P, Bordier C, N’Diaye E. N., Maridonneau-Parini I. 2000; Nonopsonic phagocytosis of Mycobacterium kansasii by human neutrophils depends on cholesterol and is mediated by CR3 associated with glycosylphosphatidylinositol-anchored proteins . J Immunol 165:5186–5191
    [Google Scholar]
  44. Rastogi N. 1991; Recent observations concerning structure and function relationships in the mycobacterial cell envelope: elaboration of a model in terms of mycobacterial pathogenicity, virulence and drug-resistance. Res Microbiol 142:464–476
    [Google Scholar]
  45. Rastogi N, Fréhel C., David H. L. 1984; Cell envelope architectures of leprosy-derived corynebacteria, Mycobacterium leprae , and related organisms: a comparative study. Curr Microbiol 11:23–30
    [Google Scholar]
  46. Rastogi N, Fréhel C., David H. L. 1986; Triple-layered structure of mycobacterial cell wall: evidence for the existence of a polysaccharide-rich outer layer in 18 mycobacterial species. Curr Microbiol 13:237–242
    [Google Scholar]
  47. Raynaud C, Etienne G, Peyron P, Lanéelle M.-A., Daffé M. 1998; Extracellular enzyme activities potentially involved in the pathogenicity of Mycobacterium tuberculosis . Microbiology 144:577–587
    [Google Scholar]
  48. Recht J, Martinez A, Torello S., Kolter R. 2000; Genetic analysis of sliding motility in Mycobacterium smegmatis . J Bacteriol 182:4348–4351
    [Google Scholar]
  49. Rivière M., Puzo G. 1991; A new type of serine-containing glycopeptidolipid from Mycobacterium xenopi . J Biol Chem 266:9057–9063
    [Google Scholar]
  50. Rosenberg M, Gutnick D., Rosenberg E. 1980; Adherence of bacteria to hydrocarbons: a simple method for measuring cell-surface hydrophobicity. FEMS Microbiol Lett 9:29–33
    [Google Scholar]
  51. Rulong S, Aguas A. P, da Silva P. P., Silva M. T. 1991; Intramacrophagic Mycobacterium avium bacilli are coated by a multiple lamellar structure: freeze fracture analysis of infected mouse liver. Infect Immun 59:3895–3902
    [Google Scholar]
  52. Senaratne R. H, Mobasheri H, Papavinasasundaram K. G, Jenner P, Lea E. J. A., Draper P. 1998; Expression of gene for a porin-like protein of the OmpA family from Mycobacterium tuberculosis H37Rv. J Bacteriol 180:3541–3547
    [Google Scholar]
  53. Takeo K, Kimura K, Kuze F, Nakai E, Nonaka T., Nishiura M. 1984; Freeze-fracture observations on the cell walls and peribacillary substances of various mycobacteria. J Gen Microbiol 130:1151–1159
    [Google Scholar]
  54. Tereletsky M. J., Barrow W. W. 1983; Postphagocytic detection of glycopeptidolipids associated with the superficial L1 layer of Mycobacterium intracellulare . Infect Immun 41:1312–1321
    [Google Scholar]
  55. Trias J., Benz R. 1994; Permeability of the cell wall of Mycobacterium smegmatis . Mol Microbiol 14283–290
    [Google Scholar]
  56. Trias J, Jarlier V., Benz R. 1992; Porins in the cell wall of mycobacteria. Science 258:1479–1481
    [Google Scholar]
  57. Van Loosdrecht M. C. M, Lyklema J, Norde W, Schraa G., Zehnder A. J. B. 1987; Electrophoretic mobility and hydrophobicity as a measure to predict the initial steps of bacterial adhesion. Appl Environ Microbiol 53:1898–1901
    [Google Scholar]
  58. Yuan Y, Crane D. C, Musser J. M, Sreevatsan S., Barry C. E.III. 1997; MMAS-1, the branch point between cis - and trans -cyclopropane-containing oxygenated mycolates in Mycobacterium tuberculosis . J Biol Chem 272:10041–10049
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-148-10-3089
Loading
/content/journal/micro/10.1099/00221287-148-10-3089
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error