1887

Abstract

nuclease is a small, secreted protein which has been successfully used as a reporter system to identify exported products in . Here, biochemical evidence is provided that the nuclease is exported by in the presence, but also in the absence of a signal sequence, and thus probably independently of the Sec translocation pathway. This implies that the nuclease should not be used as a reporter system in mycobacteria for the identification of exported products, despite what has been reported previously in the literature. The nuclease can be extended to create hybrid proteins that remain compatible with its secretion, whereas some other shorter fusions are not tolerated. This suggests that correct folding is required for efficient export. Extensive mutational analysis did not identify a specific secretion pathway. This suggests that the nuclease may be exported by different redundant systems or that components of this alternative Sec pathway are essential for bacterial survival.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-148-2-529
2002-02-01
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/148/2/1480529a.html?itemId=/content/journal/micro/10.1099/00221287-148-2-529&mimeType=html&fmt=ahah

References

  1. Berks B. C., Sergent F., Palmer T. 2000; The TAT protein export pathway . Mol Microbiol. 35260–274 [CrossRef]
  2. Braibant M., Gilot P., Content J. 2000; The ATP binding cassette (ABC) transport systems of Mycobacterium tuberculosis . FEMS Microbiol Rev 24:449–467 [CrossRef]
    [Google Scholar]
  3. Braunstein M., Griffin T. J., Kriakov J. I., Friedman S. T., Grindley N. D. F., Jacobs W. R. 2000; Identification of genes encoding exported Mycobacterium tuberculosis proteins using a Tn522′phoA in vitro transposition system. J Bacteriol 182:2732–2740 [CrossRef]
    [Google Scholar]
  4. Carroll J. D., Wallace R. C., Keane J., Remond H. G., Arbeit R. D. 2000; Identification of Mycobacterium avium DNA sequences that encode exported proteins by using phoA gene fusions. Tuber Lung Dis 80:117–130 [CrossRef]
    [Google Scholar]
  5. Chubb A. J., Woodman Z. L., Jurgen Hoffmann H., Scholle R., Ehlers M., da Silva Tatley F. 1998; Identification of Mycobacterium tuberculosis signal sequences that direct the export of a leaderless β-lactamase gene product in Escherichia coli . Microbiology 144:1619–1629 [CrossRef]
    [Google Scholar]
  6. Clemens D. L., Lee B.-Y., Horwitz M. A. 1995; Purification, characterization, and genetic analysis of Mycobacterium tuberculosis urease, a potentially critical determinant of host–pathogen interaction. J Bacteriol 177:5644–5652
    [Google Scholar]
  7. Cole S. T., Brosch R., Parkhill J. 39 other authors 1998; Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393:537–544 [CrossRef]
    [Google Scholar]
  8. Downing K. J., McAdam R. A., Mizrahi V. 1999; Staphylococcus aureus nuclease is a useful secretion reporter for mycobacteria. Gene 239:293–299 [CrossRef]
    [Google Scholar]
  9. Gey van Pittius N. C., Hide W., Gamieldien J., Brown G. D., Beyers A. D. 2000; Genomes 2000: International Conference on Microbial Model Genomes , abstract 1. p– 33
    [Google Scholar]
  10. Gomez M., Johnson S., Gennaro M. L. 2000; Identification of secreted proteins of Mycobacterium tuberculosis by a bioinformatic approach. Infect Immun 68:2323–2327 [CrossRef]
    [Google Scholar]
  11. Guilhot C., Gicquel B., Martin C. 1992; Temperature-sensitive mutants of the Mycobacterium plasmid pAL5000. FEMS Microbiol Lett 98:181–186 [CrossRef]
    [Google Scholar]
  12. Guilhot C., Otal I., Van Rompaey I., Martin C., Gicquel B. 1994; Efficient transposition in mycobacteria: construction of Mycobacterium smegmatis insertional mutant libraries. J Bacteriol 176:535–539
    [Google Scholar]
  13. Harth G., Horwitz M. A. 1997; Expression and efficient export of enzymatically active Mycobacterium tuberculosis glutamine synthetase in Mycobacterium smegmatis and evidence that the information for the export is contained within the protein. J Biol Chem 272:22728–22735 [CrossRef]
    [Google Scholar]
  14. Harth G., Horwitz M. A. 1999; Export of recombinant Mycobacterium tuberculosis superoxide dismutase is dependent upon both information in the protein and mycobacterial export machinery. J Biol Chem 274:4281–4292 [CrossRef]
    [Google Scholar]
  15. Hynes T. R., Fox R. O. 1991; The crystal structure of staphylococcal nuclease refined at 1·7 Å resolution. Proteins Struct Funct Genet 10:92–105 [CrossRef]
    [Google Scholar]
  16. Lachica R. V. F., Genigeorgis C., Hoeprich P. D. 1971; Metachromatic agar-diffusion methods for detecting staphylococcal nuclease activity. Appl Microbiol 21:585–587
    [Google Scholar]
  17. Liebl W., Sinskey A. J., Schleifer K.-H. 1992; Expression, secretion and processing of staphylococcal nuclease by Corynebacterium glutamicum . J Bacteriol 174:1854–1861
    [Google Scholar]
  18. Lim E. M., Rauzier J., Timm J., Torrea G., Murray A., Giquel B., Portnoi D. 1995; Identification of Mycobacterium tuberculosis DNA sequences encoding exported proteins by using phoA gene fusions. J Bacteriol 177:59–65
    [Google Scholar]
  19. Poquet I., Ehrlich S. D., Gruss A. 1998; An export-specific reporter designed for Gram-positive bacteria: application to Lactococcus lactis . J Bacteriol 180:1904–1912
    [Google Scholar]
  20. Ranes M. G., Rauzier J., Lagranderie M., Gheorghiu M., Gicquel B. 1990; Functional analysis of pAL5000, a plasmid from Mycobacterium fortuitum : construction of a ‘mini’ Mycobacterium Escherichia coli shuttle vector. J Bacteriol 172:2793–2797
    [Google Scholar]
  21. Ravn P., Arnau J., Madsen S., Vrang A., Israelsen H. 2000; The development of Tn Nuc and its use for the isolation of novel secretion signals in Lactococcus lactis . Gene 242:347–356 [CrossRef]
    [Google Scholar]
  22. Raynaud C., Etienne G., Peyron P., Lanéelle M. A., Daffé M. 1998; Extracellular enzyme activities potentially involved in the pathogenicity of Mycobacterium tuberculosis . Microbiology 144:577–587 [CrossRef]
    [Google Scholar]
  23. Reyrat J. M., Berthet F. X., Gicquel B. 1995; The urease locus of Mycobacterium tuberculosis and its utilization for the demonstration of allelic exchange in Mycobacterium bovis bacillus Calmette–Guerin. Proc Natl Acad Sci USA 92:8768–8772 [CrossRef]
    [Google Scholar]
  24. Rosenkrands I., Weldingh K., Jacobsen S., Veggerby Hansen C., Florio W., Gianetri I., Andersen P. 2000; Mapping and identification of Mycobacterium tuberculosis proteins by two-dimensional gel electrophoresis, microsequencing and immunodetection. Electrophoresis 21:935–948 [CrossRef]
    [Google Scholar]
  25. Sahl H. G., Bierbaum G. 1998; Lantibiotics: biosynthesis and biological activities of uniquely modified peptides from Gram-positive bacteria. Annu Rev Microbiol 52:41–79 [CrossRef]
    [Google Scholar]
  26. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual , 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  27. Sorensen A. L., Nagai S., Houen G., Andersen P., Andersen A. B. 1995; Purification and characterization of a low-molecular-mass T-cell antigen secreted by M. tuberculosis . Infect Immun 63:1710–1717
    [Google Scholar]
  28. Suciu D., Inouye M. 1996; The 19-residue pro-peptide of staphylococcal nuclease has a profound secretion-enhancing ability in Escherichia coli . Mol Microbiol 21:181–195 [CrossRef]
    [Google Scholar]
  29. Timm J., Perilli M. G., Duez C. 9 other authors 1994; Transcription and expression analysis, using lacZ and phoA gene fusions, of Mycobacterium fortuitum β-lactamase genes cloned from a natural isolate and a high level β-lactamase producer. Mol Microbiol 12:491–504 [CrossRef]
    [Google Scholar]
  30. Trias J., Jarlier V., Benz R. 1992; Porins in cell wall of mycobacteria. Science 258:1479–1481 [CrossRef]
    [Google Scholar]
  31. Triccas J. A., Berthet F.-X., Pelicic V., Gicquel B. 1999; Use of fluorescence induction and sucrose counterselection to identify Mycobacterium tuberculosis genes expressed within host cells. Microbiology 145:2923–2930
    [Google Scholar]
  32. Tullius M. V., Harth G., Horwitz M. A. 2001; High extracellular levels of Mycobacterium tuberculosis glutamine synthetase and superoxide dismutase in actively growing cultures are due to high expression and extracellular stability rather than to a protein-specific export mechanism. Infect Immun 69:6348–6363 [CrossRef]
    [Google Scholar]
  33. Weldingh K., Rosenkrands I., Jacobsen S., Birk Rasmussen P., Elhay M. J., Andersen P. 1998; Two-dimensional electrophoresis for analysis of Mycobacterium tuberculosis culture filtrate and purification and characterization of six novel proteins. Infect Immun 66:3492–3500
    [Google Scholar]
  34. Wiker H. G., Wilson M. A., Schoolnik G. K. 2000; Extracytoplasmic proteins of Mycobacterium tuberculosis – mature secreted proteins often start with aspartic acid and proline. Microbiology 146:1525–1533
    [Google Scholar]
  35. Wu Q. L., Kong D., Husson R. N. 1997; A mycobacterial extracytoplasmic function sigma factor involved in survival following stress. J Bacteriol 179:2922–2929
    [Google Scholar]
  36. Zhang Y., Heym B., Allen B., Young D., Cole S. T. 1992; The catalase-peroxidase gene and isoniazid resistance of Mycobacterium tuberculosis . Nature 358:591–593 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-148-2-529
Loading
/content/journal/micro/10.1099/00221287-148-2-529
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error