1887

Abstract

Summary: Strains of devoid of systems for the active transport of galactose () still grow on galactose but at rates that are a function of the galactose concentration of the medium: half-maximal growth rates require more than 2 m-galactose to be present. Evidence is presented that galactose is taken up by such strains by facilitated diffusion on a carrier specified by the gene (or by a gene highly co-transducible with it) which is thus a part of, or closely associated with, an enzyme II for glucose of the phosphoenolpyruvate-phosphotransferase system. However, the entry of galactose does not require phosphotransferase activity, and the sugar taken up appears in the cells as free galactose.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-94-1-75
1976-05-01
2024-04-27
Loading full text...

Full text loading...

/deliver/fulltext/micro/94/1/mic-94-1-75.html?itemId=/content/journal/micro/10.1099/00221287-94-1-75&mimeType=html&fmt=ahah

References

  1. Amaral D., Kornberg H. L. 1975; Regulation of fructose uptake by glucose in Escherichia coli. Journal of General Microbiology 90:157–168
    [Google Scholar]
  2. Ashworth J. M., Kornberg H. L. 1966; The anaplerotic fixation of carbon dioxide by Escherichia coli. Proceedings of the Royal Society B 165:179–188
    [Google Scholar]
  3. Boos W. 1969; The galactose binding protein and its relationship to the β-methylgalactoside permease from Escherichia coli. European Journal of Biochemistry 10:66–73
    [Google Scholar]
  4. Bourd G. I., Shabolenko V. P., Andreeva I. V., Klyutchova V. V., Gershanovitch V. N. 1969; Characteristics of the transport mutants of Escherichia coli with different defects in Roseman’s phosphotransferase system. Molekulyarnaya Biologiya 3:256–266
    [Google Scholar]
  5. Bourd G. I., Bolshakova T. N., Saprykina T. P., Klyutchova V. V., Gershanovitch V. N. 1971; Decrease of the rate of RNA and protein synthesis in the thermosensitive E. coli K12 mutant defective in the Roseman’s phosphotransferase system. Molekulyarnaya Biologiya 5:384–389
    [Google Scholar]
  6. Bourd G. I., Erlagaeva R. S., Bolshakova T. N., Gershanovitch V. N. 1975; Glucose catabolite repression in Escherichia coli K12 mutants defective in methyl-α-d-glucoside transport. European Journal of Biochemistry 53:419–427
    [Google Scholar]
  7. Bray G. A. 1960; A simple efficient liquid scintillator for counting aqueous solutions in a liquid scintillation counter. Analytical Biochemistry 1:279–285
    [Google Scholar]
  8. Brice C. B., Kornberg H. L. 1967; Location of a gene specifying phosphopyruvate synthase activity on the genome of Escherichia coli K12. Proceedings of the Royal Society B 168:281–292
    [Google Scholar]
  9. Buttin G. 1963a; Meeanismes regulateurs dans la biosynthèse des enzymes du metabolisme du galactose chez Escherichia coli K12.1. La biosynthèse induite de la galactokinase et l’induction simultanée de la sequence enzymatique. Journal of Molecular Biology 7:164–182
    [Google Scholar]
  10. Buttin G. 1963b; Meeanismes regulateurs dans la biosynthèse des enzymes du metabolisme du galactose chez Escherichia coli KI2. II. Le déterminisme gen6tique de la regulation. Journal of Molecular Biology 7:183–205
    [Google Scholar]
  11. Cooper R. A., Kornberg H. L. 1967; The direct synthesis of phosphoenolpyruvate by Escherichia coli. Proceedings of the Royal Society B168:263–280
    [Google Scholar]
  12. Curtis S. J., Epstein W. 1970; Two constitutive P-HPr:glucose phosphotransferases in Escherichia coli K12. Federation Proceedings 30:1123
    [Google Scholar]
  13. Epstein W., Jewett S. R., Winter R. H. 1970; Catabolite repression as basis of pleiotropy in PEP-dependent phosphotransferase mutants of E. coli K12. Federation Proceedings 29:601
    [Google Scholar]
  14. Gachelin G. 1970; Studies on the α-methylglucoside permease of Escherichia coli. A two-step mechanism for the accumulation of α-methylglucoside 6-phosphate. European Journal of Biochemistry 16:342–357
    [Google Scholar]
  15. Harold F. M. 1972; Conservation and transformation of energy by bacterial membranes. Bacteriological Reviews 36:172–230
    [Google Scholar]
  16. Hestrin S., Feingold D. S., Schramm M. 1955; Hexoside hydrolases. In Methods in Enzymology 1 pp. 231–257 Colowick S. P., Kaplan N. O. Edited by New York: Academic Press;
    [Google Scholar]
  17. Horecker B. L., Thomas J., Monod J. 1960; Galactose transport in E. coli. I. General properties studied with a galactokinaseless mutant. Journal of Biological Chemistry 235:1580–1585
    [Google Scholar]
  18. Jones-Mortimer M. C., Kornberg H. L. 1974a; Genetic control of inducer exclusion by Escherichia coli. FEBS Letters 48:93–95
    [Google Scholar]
  19. Jones-Mortimer M. C., Kornberg H. L. 1974b; Genetical analysis of fructose utilization by Escherichia coli. Proceedings of the Royal Society B 187:121–131
    [Google Scholar]
  20. Kaback H. R. 1968; The role of the phosphoenolpyruvate-phosphotransferase system in the transport of sugars by isolated membrane preparations of Escherichia coli. Journal of Biological Chemistry 243:3711–3724
    [Google Scholar]
  21. Kalckar H. M., Kurahashi K., Jordan E. 1959; Hereditary defects in galactose metabolism in Escherichia coli mutants. I. Determination of enzyme activities. Proceedings of the National Academy of Sciences of the United States of America 45:1776–1786
    [Google Scholar]
  22. Kamogawa A., Kurahashi K. 1967; Inhibitory effect of glucose on the growth of a mutant strain of Escherichia coli defective in glucose transport system. Journal of Biochemistry 61:220–230
    [Google Scholar]
  23. Kornberg H. L. 1972; Nature and regulation of hexose uptake by Escherichia coli. In The Molecular Basis of Biological Transport pp. 157–180 Woessner J. F.Jr Huijing F. Edited by New York and London: Academic Press;
    [Google Scholar]
  24. Kornberg H. L. 1973; Fine control of sugar uptake by Escherichia coli. Symposia of the Society for Experimental Biology 27:175–193
    [Google Scholar]
  25. Kornberg H. L., Jones-Mortimer M. C. 1975; PtsX: a gene involved in the uptake of glucose and of fructose by Escherichia coli. FEBS Letters 51:1–4
    [Google Scholar]
  26. Kornberg H. L., Reeves R. E. 1972; Inducible phosphoenolpyruvate-dependent hexose phosphotransferase activities in Escherichia coli. Biochemical Journal 128:1339–1344
    [Google Scholar]
  27. Kornberg H. L., Smith J. 1972; Genetic control of glucose uptake by Escherichia coli. FEBS Letters 20:270–272
    [Google Scholar]
  28. Kundig W., Kundig F. D., Anderson B. E., Roseman S. 1965; d-Galactose-6-phosphate synthesis by a phosphotransferase system. Federation Proceedings 24:658
    [Google Scholar]
  29. Lin E. C. C. 1970; The genetics of bacterial transport systems. Annual Review of Genetics 4:225–262
    [Google Scholar]
  30. Miller J. H. 1972 Experiments in Molecular Genetics. Cold Spring Harbor Laboratory.:
    [Google Scholar]
  31. Mitchell P. 1970; Membranes of cells and organelles: morphology, transport and metabolism. Symposia of the Society for General Microbiology 20:121–166
    [Google Scholar]
  32. Mitchell P. 1973; Chemiosmotic coupling in energy transduction: a logical development of biochemical knowledge. Journal of Bioenergetics 4:63–91
    [Google Scholar]
  33. Morgan M. J., Kornberg H. L. 1967; Effect of pyruvate on hexose metabolism by Escherichia coli. Biochemical Journal 103:57P
    [Google Scholar]
  34. Ordal G. W., Adler J. 1974a; Isolation and complementation of mutants in galactose taxis and transport. Journal of Bacteriology 117:509–516
    [Google Scholar]
  35. Ordal G. W., Adler J. 1974b; Properties of mutants in galactose taxis and transport. Journal of Bacteriology 117:517–526
    [Google Scholar]
  36. Postma P. W. 1976; Involvement of the phosphotransferase system in galactose transport in Salmonella typhimurium. FEBS Letters 61:49–53
    [Google Scholar]
  37. Roberts R. B., Abelson P. H., Cowie D. B., Bolton E. T., Britten R. J. 1955 Studies of Biosynthesis in Escherichia coli. Carnegie Institution of Washington Publication 607.
    [Google Scholar]
  38. Roseman S. 1969; The transport of carbohydrates by a bacterial phosphotransferase system. Journal of General Physiology 54:138S–180S
    [Google Scholar]
  39. Roseman S. 1975; The bacterial phosphoenolpyruvate: sugar phosphotransferase system. Ciba Foundation Symposia 31: (new series) 225–241
    [Google Scholar]
  40. Rotman B., Ganesan A. K., Guzman R. 1968; Transport systems for galactose and galactosides in Escherichia coli. II. Substrate and inducer specificities. Journal of Molecular Biology 36:247–260
    [Google Scholar]
  41. Saier M. H., Roseman S. 1972; Inducer exclusion and repression of enzyme synthesis in mutants of Salmonella typhimurium defective in enzyme I of the phosphoenolpyruvate: sugar phosphotransferase system. Journal of Biological Chemistry 247:972–975
    [Google Scholar]
  42. Shimada K., Weisberg R. A., Gottesman M. E. 1972; Prophage lambda at unusual chromosomal locations. I. Location of the secondary attachment sites and the properties of the lysogens. Journal of Molecular Biology 63:483–503
    [Google Scholar]
  43. Simoni R. D., Roseman S. 1973; Sugar transport. VII. Lactose transport in Staphylococcus aureus. Journal of Biological Chemistry 248:966–976
    [Google Scholar]
  44. Solomon E., Miyai K., Lin E. C. C. 1973; Membrane translocation of mannitol in Escherichia coli without phosphorylation. Journal of Bacteriology 144:723–728
    [Google Scholar]
  45. Tanaka S., Lin E. C. C. 1967; Two classes of pleiotropic mutants of Aerobacter aerogenes lacking components of a phosphoenolpyruvate-dependent phosphotransferase system. Proceedings of the National Academy of Sciences of the United States of America 57:913–919
    [Google Scholar]
  46. Taylor A. L., Trotter C. D. 1972; Linkage map of Escherichia coli strain K12. Bacteriological Reviews 36:504–524
    [Google Scholar]
  47. Vorisek J., Kepes A. 1972; Galactose transport in Escherichia coli and the galactose-binding protein. European Journal of Biochemistry 28:364–372
    [Google Scholar]
  48. Wang R. J., Morse M. L. 1968; Carbohydrate accumulation and metabolism in Escherichia coli.I. Description of pleiotropic mutants. Journal of Molecular Biology 32:59–66
    [Google Scholar]
  49. Wang R. J., Morse H. G., Morse M. L. 1970; Carbohydrate accumulation and metabolism in Escherichia coli: characteristics of the reversions of ctr mutations. Journal of Bacteriology 104:1318–1324
    [Google Scholar]
  50. Wilson D. B. 1974; The regulation and properties of the galactose transport system in Escherichia coli K12. Journal of Biological Chemistry 249:553–558
    [Google Scholar]
  51. Winkler H. H., Wilson T. H. 1966; The role of energy coupling in the transport of β-galactosides by Escherichia coli. Journal of Biological Chemistry 241:2200–2211
    [Google Scholar]
  52. Wu H. C. P. 1967; Role of the galactose transport system in the establishment of endogenous induction of the galactose operon in Escherichia coli. Journal of Molecular Biology 24:213–223
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-94-1-75
Loading
/content/journal/micro/10.1099/00221287-94-1-75
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error