1887

Abstract

A novel, non-pigmented, rod-shaped, Gram-negative strain was isolated from mesotrophic lake water in Zealand, Denmark. Phylogenetic analysis of the 16S rRNA gene sequence of the bacterium, designated strain 389, indicated that the strain belonged to the genus and formed a monophyletic group with DS-28 (99.1 % nucleotide similarity); it was less related to ATCC 19706 (96.9 % similarity) and LMG 24504 (96.8 % similarity). Hybridization of DNA from strain 389 and demonstrated a reassociation of 50.6±9.6 %. The DNA G+C content of strain 389 was 61.2 mol%. The fatty acid profile of the strain differed from those of the other strains representing the genus by a high content of C 7 and/or iso-C 2-OH (71.6 %) and a lower content of C. Strain 389 was capable of degrading peptidoglycan and had chitinase and lysozyme activities, possibly associated with the degradation of peptidoglycan, and had capacity for degradation of several other polymer compounds. Based on phenotypic and genotypic characteristics, strain 389 represents a novel species, for which we propose the name sp. nov. The type strain is 389 (=DSM 21247 =LMG 25302).

Keyword(s): PG, peptidoglycan
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.018630-0
2010-10-01
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/60/10/2467.html?itemId=/content/journal/ijsem/10.1099/ijs.0.018630-0&mimeType=html&fmt=ahah

References

  1. Brandt K. K., Patel B. K. C., Ingvorsen K. 1999; Desulfocella halophila gen. nov., sp. nov., a halophilic, fatty-acid-oxidizing, sulfate-reducing bacterium isolated from sediments of the Great Salt Lake. Int J Syst Bacteriol 49:193–200 [CrossRef]
    [Google Scholar]
  2. Brandt K. K., Petersen A., Holm P. E., Nybroe O. 2006; Decreased abundance and diversity of culturable Pseudomonas spp. populations with increasing copper exposure in the sugar beet rhizosphere. FEMS Microbiol Ecol 56:281–291 [CrossRef]
    [Google Scholar]
  3. Cauchie H.-M. 2002; Chitin production by arthropods in the hydrosphere. Hydrobiologia 470:63–95 [CrossRef]
    [Google Scholar]
  4. Chou Y.-J., Chou J.-H., Lin M.-C., Arun A. B., Young C.-C., Chen W.-M. 2008; Vogesella perlucida sp. nov., a non-pigmented bacterium isolated from spring water. Int J Syst Evol Microbiol 58:2677–2681 [CrossRef]
    [Google Scholar]
  5. Chou J.-H., Chou Y.-J., Arun A.-B., Young C.-C., Chen C. A., Wang J.-T., Chen W.-M. 2009; Vogesella lacus sp. nov., isolated from a soft-shell turtle culture pond. Int J Syst Evol Microbiol 59:2629–2632 [CrossRef]
    [Google Scholar]
  6. Cole J. R., Wang Q., Cardenas E., Fish J., Chai B., Farris R. J., Kulam-Syed-Mohideen A. S., McGarrell D. M., Marsh T. other authors 2009; The Ribosomal Database Project: improved alignments and new tools for rRNA analysis. Nucleic Acids Res 37:D141–D145 [CrossRef]
    [Google Scholar]
  7. De Ley J., Cattoir H., Reynaert A. 1970; The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12:133–142 [CrossRef]
    [Google Scholar]
  8. Eisenstadt E., Carlton B. C., Brown B. J. 1994; Gene mutation. In Methods for General and Molecular Bacteriology pp 297–316 Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  9. Frette L., Johnsen K., Jørgensen N. O. G., Nybroe O., Kroer N. 2004; Functional characteristics of culturable bacterioplankton from marine and estuarine environments. Int Microbiol 7:219–227
    [Google Scholar]
  10. Grimes D. J., Woese C. R., MacDonell M. T., Colwell R. R. 1997; Systematic study of the genus Vogesella gen. nov. and its type species, Vogesella indigofera comb. nov. Int J Syst Bacteriol 47:19–27 [CrossRef]
    [Google Scholar]
  11. Hall T. A. 1999; BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98
    [Google Scholar]
  12. Hugh R., Leifson E. 1953; The taxonomic significance of fermentative versus oxidative metabolism of carbohydrates by various Gram negative bacteria. J Bacteriol 66:24–26
    [Google Scholar]
  13. Jeffries C. D., Holtman D. F., Guse D. G. 1957; Rapid method for determining the activity of microorganisms on nucleic acids. J Bacteriol 73:590–591
    [Google Scholar]
  14. Johnson M., Zaretskaya I., Raytselis Y., Merezhuk Y., McGinnis S., Madden T. L. 2008; NCBI blast: a better web interface. Nucleic Acids Res 36:W5–W9 [CrossRef]
    [Google Scholar]
  15. Jørgensen N. O. G., Brandt K. K., Nybroe O., Hansen M. 2009; Delftia lacustris, sp. nov., a peptidoglycan-degrading bacterium from freshwater and emended description of D. tsuruhatensis as a peptidoglycan-degrading bacterium. Int J Syst Evol Microbiol 59:2195–2199 [CrossRef]
    [Google Scholar]
  16. Larkin M. A., Blackshields G., Brown N. P., Chenna R., McGettigan P. A., McWilliam H., Valentin F., Wallace I. M., Wilm A. other authors 2007; clustal w and clustal x version 2.0. Bioinformatics 23:2947–2948 [CrossRef]
    [Google Scholar]
  17. Nagata T., Meon B., Kirchman D. L. 2003; Microbial degradation of peptidoglycan in seawater. Limnol Oceanogr 48:745–754 [CrossRef]
    [Google Scholar]
  18. O'Brien M., Colwell R. R. 1987; A rapid test for chitinase activity that uses 4-methylumbelliferyl- N -acetyl-beta-d-glucosaminide. Appl Environ Microbiol 53:1718–1720
    [Google Scholar]
  19. Pelz O., Cifuentes L. A., Hammer B. T., Kelley C. A., Coffin R. B. 1998; Tracing the assimilation of organic compounds using δ 13C analysis of unique amino acids in the bacterial peptidoglycan cell wall. FEMS Microbiol Ecol 25:229–240
    [Google Scholar]
  20. Watson L. P., McKee A. E., Merrel B. R. 1980; Preparation of microbiological specimens for scanning electron microscopy. Scan Electron Microsc 2:45–56
    [Google Scholar]
  21. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E. other authors 1987; International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464 [CrossRef]
    [Google Scholar]
  22. Whitman W. B., Coleman D. C., Wiebe W. J. 1998; Prokaryotes: The unseen majority. Proc Natl Acad Sci U S A 95:6578–6583 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.018630-0
Loading
/content/journal/ijsem/10.1099/ijs.0.018630-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error